首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   14篇
  国内免费   41篇
安全科学   25篇
废物处理   5篇
综合类   96篇
基础理论   1篇
污染及防治   17篇
  2024年   3篇
  2023年   3篇
  2022年   8篇
  2021年   3篇
  2020年   9篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   8篇
  2015年   6篇
  2014年   4篇
  2013年   1篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
11.
将基于标准起飞着陆(LTO)循环各阶段工作时间的飞机排放量计算方法加以改进,利用AMDAR资料计算飞机的有效排放高度,进而准确计算出基于逐架飞机的大气污染物排放总量.结果表明,首都国际机场2013年飞机NOx、CO、HC、SO2和PM2.5排放总量分别为7042.1t、3189.9t、295.3t、429.4t和150.4t.与传统的基于LTO循环的方法相比,修正后的首都机场飞机NOx、CO、HC和SO2排放增加了23.5%、2.3%、2.1%和18.1%.飞机排放的CO、HC、SO2和PM2.5月变化较小,NOx排放受飞机有效排放高度影响月波动较大.1~2月飞机污染物排放量处于全年最低水平,8月各污染物排放达到峰值.此外,飞机在爬升和滑行/慢车两种模式下污染物排放比例最大,分别占排放总量的37.7%与36.8%.  相似文献   
12.
2014年10月中国东部持续重污染天气成因分析   总被引:11,自引:0,他引:11       下载免费PDF全文
2014年10月5─13日中国东部发生了大范围、长时间的(雾)霾及重污染天气. 采用AQI数据分析此次大气重污染过程的时、空演变特征,并应用NCEP(美国国家环境预报中心)再分析资料以及地面、小球探空数据,分析了主要天气型演变、边界层及上空的风场、气象条件特征,以研究此次秋季重污染天气的气象成因和形成过程. 结果表明:①华北、东北是此次污染最为严重的地区,其域内各城市持续数日的污染演变可分为AQI显著上升、持续高值、下降3个阶段. ②在AQI上升阶段(10月6—8日),受大陆高压控制,东部地区出现较弱地方风场和偏南风输送风场,风速在0~2 m/s,相对湿度在22%~86%,3 000 m逆温显著利于污染物积累. ③在持续污染阶段(10月8—11日),海上高压滞留,再加上台风“凤凰”北上阻挡大陆高压影响,使东部地区出现持续4 d的偏南风、偏东风弱风场,风速在1~4 m/s,相对湿度为57%~96%,造成严重污染. ④在AQI下降阶段(10月11—12日),后续大陆高压南下,前部冷锋利于污染物清除,风速达到6 m/s,是AQI降低的主要天气背景场. 因此,持续出现的稳定天气形势是导致此次中国东部重污染天气的主要气象原因.   相似文献   
13.
生物反应器填埋场是一种新型的垃圾卫生填埋场,可以加速填埋场的稳定及甲烷的产生。通过模拟试验探讨了加装了活性炭载体的生物反应器填埋场在不同操作条件下的产气情况及COD,pH值、挥发性脂肪酸的变化趋势。试验证明添加活性炭做载体的反应器不仅有助于垃圾降解及渗滤液中COD。浓度的降低,而且填埋气中甲烷含量也较高;但是简单的两相型反应器却不利于甲烷气体的产生和CODCr的降解,这是由于其水解速度慢,水解反应时间长引起的。  相似文献   
14.
对某炼油石化厂进行了O3体积分数和VOCs的监测分析,获得炼油厂周边地区各月O3的体积分数变化特征和日O3体积分数变化特征.研究发现,该炼油厂地区O3体积分数经常超过国家二级标准,说明该地区O3污染严重.该地区O3日变化曲线不同于所在城市中心的O3变化特征.炼油厂地区O3体积分数在6-8月显示出双峰特性以及更长的最大值持续时间.与此同时,在5月、9月、10月使用SUMMA采样罐在炼油厂厂界进行VOCs样品采集,使用气相色谱质谱联用仪(GC - MS)对样品进行分析,得到厂界VOCs各组分的体积分数,烷烃比例最高,约82.6%,其中直链烷烃占49.9%,而芳香烃和烯烃仅为10.2%和7.5%.VOCs监测结果与文献相近,烯烃排放量略低.此外,为了对炼油石化厂排放的VOCs各物种敏感性特征进行量化描述,利用丙烯等效浓度法,对炼油厂区域各VOCs物种的反应活性进行了归一化研究,量化了该地区各物种的反应活性,获得了综合反应活性较强的5种烯烃、4种直链烷烃和1种环烷烃.  相似文献   
15.
非道路机械是大气污染物的重要来源,已经逐渐引起了人们的关注.本研究旨在建立2020年京津冀地区典型非道路机械排放清单,分析排放控制政策和成本.结果表明:2020年京津冀地区典型非道路机械CO、HC、NOx、PM2.5、SO2的排放量分别为286.96×103、232.17×103、364.30×103、34.15×103、4.14×103 t.农业机械的排放量明显大于建筑机械的排放量,约占总量的46.36%~91.62%.在综合情景(IS)下,2030年CO、HC、NOx、PM2.5、SO2的排放量与2020年基准情景(BAU)相比分别增加了-54.16%、-33.76%、-42.46%、-54.07%、-10.37%.在单一控制措施下,更新排放标准(UES)对5种污染物的减排效果最好,淘汰老旧非道路机械(CIV)对NOx和P...  相似文献   
16.
北京地区秋冬季大气污染特征及成因分析   总被引:1,自引:0,他引:1  
为了研究近两年北京地区PM2. 5污染特征及成因变化,利用常规观测资料和改进的后向轨迹模型(Traj Stat)对2016~2017年秋冬季大气重污染时段的颗粒物浓度、气象要素和气团传输路径进行了综合分析.结果表明,研究期间北京地区共发生13次持续2 d以上的重污染事件,冬季过程约占61. 5%,且污染程度和持续时间均高于秋季.地面受弱气压场控制、高湿度、静小风以及较低的混合层高度,加之北京三面环山的特殊地势是导致秋冬季静稳型污染频发的重要因素,重污染期间PM2. 5/PM10的平均比值高达0. 86.累积阶段气团主要来自于西北、偏西、西南和东南方向,其中西南和东南路径为典型污染传输通道,轨迹频率为21. 6%.此外,采用WRF-CAMx模型定量估算了2016年12月16~22日典型过程中本地和外来污染源对北京PM2. 5的贡献,结果发现不同气团输送条件下,二者的贡献差异较大.当南部气团输入时,本地贡献会显著下降,以外部区域输送为主导;若气流来自西北方向情况则相反.污染过程期间,本地贡献为16. 5%~69. 3%.  相似文献   
17.
生物反应器填埋场是一种新型的垃圾卫生填埋场,可以加速填埋场的稳定及甲烷的产生.通过模拟试验探讨了生物反应器填埋场在不同操作条件下的产甲烷情况及COD、pH值的变化趋势.试验证明较高的回灌频率有助于垃圾降解、产甲烷速率的升高及渗滤液中COD浓度的降低;污泥接种起缓冲作用,使垃圾的降解及产气速率更趋向平稳;甲烷的产生与COD的降低是同步进行的,因此可以通过COD的变化趋势来判断产甲烷情况.研究建立了反映垃圾含水率影响填埋场产甲烷的数学模型,该模型具有简便、直观、准确等优点.  相似文献   
18.
典型工业无组织源VOCs排放特征   总被引:15,自引:0,他引:15  
选取制药厂、酿酒厂和橡胶厂分析了不同工艺过程VOCs排放特征.结果表明,制药厂安乃近合成和氨基比林合成的VOCs排放以苯、甲苯和苯乙烯等苯系物为主,乙酰氨基酚合成的VOCs排放主要以C4~C6的烷烃为主,酿酒厂和橡胶厂VOCs排放均以甲苯、乙苯和间,对二甲苯为主.采用最大增量反应活性法对臭氧生成潜势进行分析,制药厂安乃近合成和氨基比林合成VOCs单位臭氧生成潜势以苯、甲苯等苯系物为主;乙酰氨基酚合成以顺-2-丁烯、甲苯和异戊烷为主;酿酒厂、橡胶厂以甲苯、乙苯、间,对二甲苯为主.同时采用阈稀释倍数对VOCs进行恶臭分析,制药厂和酒厂无组织排放VOCs恶臭污染程度较轻,橡胶厂的伸缩装置车间和硫化车间的无组织VOCs排放存在一定程度的恶臭污染.  相似文献   
19.
利用O_3、PM_(2.5)监测数据、紫外辐射观测数据及气象观测资料,结合WRF模式模拟的大气环境背景场,分析了2014年9月3—8日北京一次近地层O_3与PM_(2.5)复合污染过程。结果表明,O_3和PM_(2.5)出现高质量浓度污染与大陆高压和副热带高压系统的相继持续控制有关,较强的紫外辐射及高压形成的下沉气流是造成边界层复合污染,尤其是O_3污染的主要原因。此次复合污染过程中,O_3于9月4—7日连续4 d超标,PM_(2.5)于9月5—7日连续3 d超标。造成这一现象的原因为:受大陆高压和副高的持续高压影响,北京地区天气晴朗、紫外辐射较强,地面风场较弱,700 h Pa以下持续存在下沉气流,O_3日均质量浓度逐日上升,于9月5日先到达峰值,同时PM_(2.5)日均质量浓度逐日升高;6日在副高西部边缘偏南暖湿气流输送及形成的平流逆温作用下,PM_(2.5)质量浓度突增,削弱了太阳紫外辐射强度,O_3质量浓度开始下降。此后,在低压槽作用下PM_(2.5)质量浓度增到峰值,O_3质量浓度保持下降趋势。9月5—7日形成了3 d的O_3与PM_(2.5)复合污染事件。  相似文献   
20.
为研究京津冀地区天然源挥发性有机化合物(BVOCs)近20a排放量及时空分布特征,本文基于卫星遥感解译获得的2000年、2005年、2010年、2015年、2020年共5期中国土地利用数据,计算获得了京津冀地区各市县BVOCs排放量及排放组成,同时对京津冀地区近20a的BVOCs排放的时空分布进行了特征分析.结果表明,近20a京津冀地区BVOCs平均排放总量为76.40万t/a,其中河北省、北京市、天津市的平均排放总量分别为59.11万t/a,15.29万t/a,2.00万t/a;按照排放组成分析,ISOP平均排放总量为16.80万t/a,占总排放量的21.99%,TMT平均排放总量为29.62万t/a,占总排放量的38.77%,OVOCs平均排放总量为29.97万t/a,占总排放量的39.23%.根据排放时间特征分析,京津冀地区冬季BVOCs排放量最低、夏季BVOCs排放量最高.BVOCs排放的空间分布与土地利用类型和植被分布密切相关,不同土地利用类型的BVOCs排放贡献具有显著差异,近20a京津冀地区林地、耕地、草地的BVOCs平均排放量分别为60.33万t/a,12.78万t/a,2.31万t/a,分别占总排放量的78.90%,16.79%,3.04%.京津冀地区BVOCs空间排放分布差异比较明显,北部、东北部的整体排放量明显高于南部、东南部.本研究可为BVOCs的计算提供研究思路,同时可为京津冀地区空气污染治理提供有关基础数据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号