首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37836篇
  免费   396篇
  国内免费   306篇
安全科学   1194篇
废物处理   1803篇
环保管理   5081篇
综合类   6265篇
基础理论   9554篇
环境理论   13篇
污染及防治   9420篇
评价与监测   2573篇
社会与环境   2408篇
灾害及防治   227篇
  2022年   316篇
  2021年   377篇
  2020年   230篇
  2019年   293篇
  2018年   547篇
  2017年   551篇
  2016年   851篇
  2015年   643篇
  2014年   1005篇
  2013年   3053篇
  2012年   1212篇
  2011年   1624篇
  2010年   1331篇
  2009年   1403篇
  2008年   1682篇
  2007年   1668篇
  2006年   1504篇
  2005年   1314篇
  2004年   1283篇
  2003年   1250篇
  2002年   1172篇
  2001年   1394篇
  2000年   987篇
  1999年   632篇
  1998年   441篇
  1997年   461篇
  1996年   480篇
  1995年   567篇
  1994年   504篇
  1993年   435篇
  1992年   458篇
  1991年   467篇
  1990年   415篇
  1989年   415篇
  1988年   399篇
  1987年   336篇
  1986年   308篇
  1985年   322篇
  1984年   367篇
  1983年   355篇
  1982年   366篇
  1981年   297篇
  1980年   245篇
  1979年   274篇
  1978年   235篇
  1977年   202篇
  1975年   212篇
  1974年   213篇
  1973年   222篇
  1972年   192篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Emitted thermal infrared radiation (TIR, λ= 8 to 14 μm) can be used to measure surface water temperatures (top approximately 100 μm). This study evaluates the accuracy of stream (50 to 500 m wide) and lake (300 to 5,000 m wide) radiant temperatures (15 to 22°C) derived from airborne (MASTER, 5 to 15 m) and satellite (ASTER 90 m, Landsat ETM+ 60 m) TIR images. Applied atmospheric compensations changed water temperatures by ?0.2 to +2.0°C. Atmospheric compensation depended primarily on atmospheric water vapor and temperature, sensor viewing geometry, and water temperature. Agreement between multiple TIR bands (MASTER ‐ 10 bands, ASTER ‐ 5 bands) provided an independent check on recovered temperatures. Compensations improved agreement between image and in situ surface temperatures (from 2.0 to 1.1°C average deviation); however, compensations did not improve agreement between river image temperatures and loggers installed at the stream bed (from 0.6 to 1.6°C average deviation). Analysis of field temperatures suggests that vertical thermal stratification may have caused a systematic difference between instream gage temperatures and corrected image temperatures. As a result, agreement between image temperatures and instream temperatures did not imply that accurate TIR temperatures were recovered. Based on these analyses, practical accuracies for corrected TIR lake and stream surface temperatures are around 1°C.  相似文献   
992.
The need for scientifically defensible water quality standards for nonpoint source pollution control continues to be a pressing environmental issue. The probability of impact at differing levels of nonpoint source pollution was determined using the biological response of instream organisms empirically obtained from a statistical survey. A conditional probability analysis was used to calculate a biological threshold of impact as a function of the likelihood of exceeding a given value of pollution metric for a specified geographic area. Uncertainty and natural variability were inherently incorporated into the analysis through the use of data from a probabilistic survey. Data from wadable streams in the mid‐Atlantic area of the U.S. were used to demonstrate the approach. Benthic macroinvertebrate community index values (EPT taxa richness) were used to identify impacted stream communities. Percent fines in substrate (silt/clay fraction, > 0.06 mm) were used as a surrogate indicator for sedimentation. Thresholds of impact due to sedimentation were identified by three different techniques, and were in the range of 12 to 15 percent fines. These values were consistent with existing literature from laboratory and field studies on the impact of sediments on aquatic life in freshwater streams. All results were different from values determined from current regulatory guidance. Finally, it was illustrated how these thresholds could be used to develop criterion for protection of aquatic life in streams.  相似文献   
993.
Remotely sensed imagery is becoming a common source of environmental data. Consequently, there is an increasing need for tools to assess the accuracy and information content of such data. Particularly when the spatial resolution of imagery is fine, the accuracy of image processing is determined by comparisons with field data. However, the nature of error is more difficult to assess. In this paper we describe a set of tools intended for such an assessment when tree objects are extracted and field data are available for comparison. These techniques are demonstrated on individual tree locations extracted from an IKONOS image via local maximum filtering. The locations of the extracted trees are compared with field data to determine the number of found and missed trees. Aspatial and spatial (Voronoi) analysis methods are used to examine the nature of errors by searching for trends in characteristics of found and missed trees. As well, analysis is conducted to assess the information content of found trees.  相似文献   
994.
995.
996.
997.
Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or various useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.  相似文献   
998.
Like many federal statutes, the U.S. Endangered Species Act (ESA) contains vague or ambiguous language. The meaning imparted to the ESA's unclear language can profoundly impact the fates of endangered and threatened species. Hence, conservation scientists should contribute to the interpretation of the ESA when vague or ambiguous language contains scientific words or refers to scientific concepts. Scientists need to know at least these 2 facts about statutory interpretation: statutory interpretation is subjective and the potential influence of normative values results in different expectations for the parties involved. With the possible exception of judges, all conventional participants in statutory interpretation are serving their own interests, advocating for their preferred policies, or biased. Hence, scientists can play a unique role by informing the interpretative process with objective, policy‐neutral information. Conversely, scientists may act as advocates for their preferred interpretation of unclear statutory language. The different roles scientists might play in statutory interpretation raise the issues of advocacy and competency. Advocating for a preferred statutory interpretation is legitimate political behavior by scientists, but statutory interpretation can be strongly influenced by normative values. Therefore, scientists must be careful not to commit stealth policy advocacy. Most conservation scientists lack demonstrable competence in statutory interpretation and therefore should consult or collaborate with lawyers when interpreting statutes. Professional scientific societies are widely perceived by the public as unbiased sources of objective information. Therefore, professional scientific societies should remain policy neutral and present all interpretations of unclear statutory language; explain the semantics and science both supporting and contradicting each interpretation; and describe the potential consequences of implementing each interpretation. A review of scientists’ interpretations of the phrase “significant portion of its range” in the ESA is used to critique the role of scientists and professional societies in statutory interpretation.  相似文献   
999.
Environmental Science and Pollution Research - The poor adsorption capacity of sandy soils is one of the primary reasons of a high level of phosphorus (P) leaching. Silicon (Si)-rich soil...  相似文献   
1000.
In a world of shrinking habitats and increasing competition for natural resources, potentially dangerous predators bring the challenges of coexisting with wildlife sharply into focus. Through interdisciplinary collaboration among authors trained in the humanities, social sciences, and natural sciences, we reviewed current approaches to mitigating adverse human–predator encounters and devised a vision for future approaches to understanding and mitigating such encounters. Limitations to current approaches to mitigation include too much focus on negative impacts; oversimplified equating of levels of damage with levels of conflict; and unsuccessful technical fixes resulting from failure to engage locals, address hidden costs, or understand cultural (nonscientific) explanations of the causality of attacks. An emerging interdisciplinary literature suggests that to better frame and successfully mitigate negative human–predator relations conservation professionals need to consider dispensing with conflict as the dominant framework for thinking about human–predator encounters; work out what conflicts are really about (they may be human–human conflicts); unravel the historical contexts of particular conflicts; and explore different cultural ways of thinking about animals. The idea of cosmopolitan natures may help conservation professionals think more clearly about human–predator relations in both local and global context. These new perspectives for future research practice include a recommendation for focused interdisciplinary research and the use of new approaches, including human‐animal geography, multispecies ethnography, and approaches from the environmental humanities notably environmental history. Managers should think carefully about how they engage with local cultural beliefs about wildlife, work with all parties to agree on what constitutes good evidence, develop processes and methods to mitigate conflicts, and decide how to monitor and evaluate these. Demand for immediate solutions that benefit both conservation and development favors dispute resolution and technical fixes, which obscures important underlying drivers of conflicts. If these drivers are not considered, well‐intentioned efforts focused on human–wildlife conflicts will fail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号