首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99268篇
  免费   1237篇
  国内免费   1156篇
安全科学   3919篇
废物处理   3767篇
环保管理   14968篇
综合类   21370篇
基础理论   27538篇
环境理论   75篇
污染及防治   18752篇
评价与监测   6025篇
社会与环境   4602篇
灾害及防治   645篇
  2022年   855篇
  2021年   865篇
  2020年   673篇
  2019年   881篇
  2018年   1336篇
  2017年   1362篇
  2016年   2314篇
  2015年   1860篇
  2014年   2596篇
  2013年   9265篇
  2012年   2602篇
  2011年   3208篇
  2010年   3480篇
  2009年   3620篇
  2008年   2842篇
  2007年   2749篇
  2006年   2900篇
  2005年   2793篇
  2004年   3046篇
  2003年   2916篇
  2002年   2456篇
  2001年   2900篇
  2000年   2278篇
  1999年   1667篇
  1998年   1411篇
  1997年   1403篇
  1996年   1545篇
  1995年   1639篇
  1994年   1522篇
  1993年   1376篇
  1992年   1377篇
  1991年   1344篇
  1990年   1288篇
  1989年   1258篇
  1988年   1105篇
  1987年   1029篇
  1986年   1007篇
  1985年   1077篇
  1984年   1178篇
  1983年   1179篇
  1982年   1184篇
  1981年   1104篇
  1980年   949篇
  1979年   955篇
  1978年   837篇
  1977年   732篇
  1976年   648篇
  1974年   628篇
  1973年   672篇
  1972年   662篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
811.
The typical method of cool-season grass-seed production in Mediterranean climates briefly exposes surface waters to potentially high concentrations of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] during the initial season of growth. To better understand the process, and the degree, of diuron transport from agricultural fields, two grass-seed fields in the Willamette Valley of Oregon were monitored for diuron loss in surface runoff and tile drainage during the first wet season after planting. Initial diuron concentrations in surface runoff were high (>1000 microg L(-1) in one field and >100 microg L(-1) in the other), though they decreased by two orders of magnitude by the end of the season. Concentrations in the tile drains were as much as 1000 times lower than in the surface runoff during the first few weeks of runoff events, and they remained lower than surface water concentrations throughout the season. Total losses in surface runoff were between 1.3 and 3% of the amount applied-much higher than losses via the tile drains. It is also shown by means of a simple first-order decay model that, when little information is available, it may be best to describe diuron depletion in runoff water as a function of cumulative rainfall during the wet season.  相似文献   
812.
Forage-based livestock systems have been implicated as major contributors to deteriorating water quality, particularly for phosphorus (P) from commercial fertilizers and manures affecting surface and ground water quality. Little information exists regarding possible magnitudes of nutrient losses from pastures that are managed for both grazing and hay production and how these might impact adjacent bodies of water. We examined the changes that have occurred in soil fertility levels of rhizoma peanut (Arachis glabrata Benth.)-based beef cattle pastures (n = 4) in Florida from 1988 to 2002. These pastures were managed for grazing in spring followed by haying in late summer and were fertilized annually with P (39 kg P2O5 ha(-1)) and K (68 kg K2O ha(-1)). Additionally, we investigated trends in water quality parameters and trophic state index (TSI) of lakes (n = 3) associated with beef cattle operations from 1993 to 2002. Overall, there was no spatial or temporal buildup of soil P and other crop nutrients despite the annual application of fertilizers and daily in-field loading of animal waste. In fact, soil fertility levels showed a declining trend for crop nutrient levels, especially soil P (y = 146.57 - 8.14 x year; r2= 0.75), even though the fields had a history of P fertilization and the cattle were rotated into the legume fields. Our results indicate that when nutrients are not applied in excess, cow-calf systems are slight exporters of P, K, Ca, and Mg through removal of cut hay. Water quality in lakes associated with cattle production was "good" (30-46 TSI) based on the Florida Water Quality Standard. These findings indicate that properly managed livestock operations may not be major contributors to excess loads of nutrients (especially P) in surface water.  相似文献   
813.
Fall season fertilization is a widely recommended practice for turfgrass. Fertilizer applied in the fall, however, may be subject to substantial leaching losses. A field study was conducted in Connecticut to determine the timing effects of fall fertilization on nitrate N (NO3-N) leaching, turf color, shoot density, and root mass of a 90% Kentucky bluegrass (Poa pratensis L.), 10% creeping red fescue (Festuca rubra L.) lawn. Treatments consisted of the date of fall fertilization: 15 September, 15 October, 15 November, 15 December, or control which received no fall fertilizer. Percolate water was collected weekly with soil monolith lysimeters. Mean log(10) NO3-N concentrations in percolate were higher for fall fertilized treatments than for the control. Mean NO3-N mass collected in percolate water was linearly related to the date of fertilizer application, with higher NO3-N loss for later application dates. Applying fall fertilizer improved turf color and density but there were no differences in color or density among applications made between 15 October and 15 December. These findings suggest that the current recommendation of applying N in mid- to late November in southern New England may not be compatible with water quality goals.  相似文献   
814.
What is soil organic matter worth?   总被引:3,自引:0,他引:3  
The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.  相似文献   
815.
Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%).  相似文献   
816.
Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.  相似文献   
817.
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both.  相似文献   
818.
To support EU policy, indicators of pesticide leaching at the European level are required. For this reason, a metamodel of the spatially distributed European pesticide leaching model EuroPEARL was developed. EuroPEARL considers transient flow and solute transport and assumes Freundlich adsorption, first-order degradation and passive plant uptake of pesticides. Physical parameters are depth dependent while (bio)-chemical parameters are depth, temperature, and moisture dependent. The metamodel is based on an analytical expression that describes the mass fraction of pesticide leached. The metamodel ignores vertical parameter variations and assumes steady flow. The calibration dataset was generated with EuroPEARL and consisted of approximately 60,000 simulations done for 56 pesticides with different half-lives and partitioning coefficients. The target variable was the 80th percentile of the annual average leaching concentration at 1-m depth from a time series of 20 yr. The metamodel explains over 90% of the variation of the original model with only four independent spatial attributes. These parameters are available in European soil and climate databases, so that the calibrated metamodel could be applied to generate maps of the predicted leaching concentration in the European Union. Maps generated with the metamodel showed a good similarity with the maps obtained with EuroPEARL, which was confirmed by means of quantitative performance indicators.  相似文献   
819.
The performance of an aerated submerged fixed-film reactor (ASFFR) under simultaneous organic and ammonium loading and its effect on nitrification was studied. Organic loadings varied in the range of 1.93 to 5.29 g chemical oxygen demand (COD) m-2 d-1 and NH4-N loadings were in the range of 116 to 318 mg NH4-N m-2 d-1. Increments of loading rates were obtained both by increasing the flow rate and increasing the influent substrate in individual pilot runs. Results showed that with organic loading rates up to 3.97 g COD m-2 d-1, complete nitrification was achievable. Although high organic loading such as 5.29 g COD m-2 d-1 could cause nitrification to stop, shifting to lower organic loadings made nitrification start and set rapidly to its previous steady-state concentrations. Comparison of results showed that in the ASFFR, nitrification would be severely affected by an organic loading rate of 5.29 g COD m-2 d-1 by increasing either the flow or the influent substrate. It should be noted that the average value of dissolved oxygen was 3.4 mg L-1 with an air supply of 15 L min-1, and there was no indication of oxygen limitation. The results of this study show the flexibility of ASFFRs under changing organic loads. Furthermore, for achieving complete nitrification and optimum application of these reactors for protecting receiving water from the environmental hazards of ammonium, the maximum organic loading that would present complete nitrification should be considered.  相似文献   
820.
Long-term field trials using lignite fly ash (LFA) were carried out in rice crops during the period 1996-2000 at Mine I, Neyveli Lignite Corporation, Tamil Nadu. LFA, being alkaline and endowed with an excellent pozzolanic nature, silt loam texture, and plant nutrients, has the potential to improve the texture, fertility, and crop productivity of mine spoil. The rice crops were the first, third, fifth, and sixth crops in rotation. The other crops, such as green gram (second) and sun hemp (fourth), were grown as green manure. For experimental trials, LFA was applied at various dosages (0, 5, 10, 20, 50, 100, and 200 t/ha), with and without press mud (10 t/ha), before cultivation of the first crop. Repeat applications of LFA were made at the same dosages in treatments of up to 50 t/ha (with and without press mud) before cultivation of the third and fifth crops. Press mud, a lightweight organic waste product from the sugar industry, was used as an organic amendment and source of plant nutrients. Also, a recommended dosage of chemical fertilizer, along with gypsum, humic acid, and biofertilizer as supplementing agents, was applied in all the treatments, including control. With one-time and repeat applications of LFA, from 5 to 20 t/ha (with and without press mud), the crop yield (grain and straw) increased significantly (p < 0.05), in the range from 3.0 to 42.0% over the corresponding control. The maximum yield was obtained with repeat applications of 20 t/ha of LFA with press mud in the third crop. The press mud enhanced the yield in the range of 1.5-10.2% with various dosages of LFA. The optimum dosage of LFA was 20 t/ha for both one-time and repeat applications. Repeat applications of LFA at lower dosages of up to 20 t/ha were more effective in increasing the yield than the corresponding one-time applications of up to 20 t/ha and repeat applications at 50 t/ha. One-time and repeat applications of LFA of up to 20 t/ha (with and without press mud), apart from increasing the yield, evinced improvement in the texture and fertility of mine spoil and the nutrient content of crop produce. Furthermore, some increase in the content of trace and heavy metals and the level of gamma-emitters in the mine spoil and crop produce was observed, but well within the permissible limits. The residual effect of LFA on succeeding crops was also encouraging in terms of eco-friendliness. Beyond 20 t/ha of LFA, the crop yield decreased significantly (p < 0.05), as a result of the formation of hardpan in the mine spoil and possibly the higher concentration of soluble salts in the LFA. However, the adverse effects of soluble salts were annulled progressively during the cultivation of succeeding crops. A plausible mechanism for the improved fertility of mine spoil and the carryover or uptake of toxic trace and heavy metals and gamma-emitters in mine spoil and crop produce is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号