Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals. 相似文献
This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (?OH). 相似文献
Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia’s most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5–0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal. 相似文献
Environmental Science and Pollution Research - Oil spills can result in significant damage to marine estuaries, rivers, lakes, wetlands, and shorelines. Electrospun nanofibers containing... 相似文献
Polyaniline (PANI) and Ag/PANI nanoporous composite were prepared by an oxidative polymerization method. The oxidation process of PANI nanoparticles was occurred using (NH4)2S2O8 while the oxidation process of Ag/PANI nanoporous composite was occurred using AgNO3 under the effect of artificial radiation. The structural, morphological, and optical properties of the PANI and Ag/PANI nanoporous structures were studied using different characterization tools. The results confirm the formation of polycrystalline nanoporous PANI and spherical nanoporous composite of Ag/PANI particles. Antibacterial activity tests against gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, and gram-negative bacteria, Escherichia coli, and Salmonella species were carried out using different concentrations of PANI nanoparticles and Ag/PANI nanoporous composites. PANI has not antibacterial effect against all studied pathogens. In contrast, Ag/PANI nanoporous composites possessed antibacterial activity that is identified by the zone of inhibition. The inhibition zones of bacteria are in order; Salmonella species?>?S. aureus?>?B. subtilis?>?E. coli. The inhibition zones of all bacteria increased with increasing concentrations of Ag/PANI nanoporous composites from 200 to 400 ppm then decreased with further increasing of the dose concentrations to 600 ppm. Finally, a simplified mechanism based on the electrostatic attraction is presented to describe the antimicrobial activity of Ag/PANI nanoporous composite. 相似文献
Environmental Science and Pollution Research - One of the major challenges faced by human society is the freshwater crisis and shortage of conventional energy. Solar still is considered as one of... 相似文献
The availability of drinkable water, along with food and air, is a fundamental human necessity. Because of the presence of higher amounts of salt and pollution, direct use of water from sources such as lakes, sea, rivers, and subsurface water reservoirs is not normally suggested. Solar is still a basic technology that can use solar energy to transform accessible waste or brackish water into drinkable water. Exergy analysis is a strong inferential technique for evaluating the performance of thermal systems. Exergy is becoming more popular as a predictive tool for analysis, and there is a rising interest in using it. In this paper, performance analysis on the aspect of energy and exergy from the proposed solar still (PSS) (conventional solar still with the photovoltaic modules-AC heater) was analyzed on three different water depths (Wd) conditions (1, 2, and 3 cm). Using a solar still with an electric heater, the daily potable water production was found as 8.54, 6.37, and 4.43 kg, for the variations in water depth (Wd) of 1, 2, and 3 cm respectively. The energy and exergy efficiency of the PSS at the Wd of 1, 2, and 3 cm were 75.67, 51.45, and 37.21% and 5.08, 2.29, and 1.03%, respectively. At 1 cm Wd, PSS produced the maximum freshwater yield as compared to the other two water depths. When the Wd is increased from 1 to 2 cm and from 1 to 3 cm, the yield is decreased up to 27.3 and 52.7%, respectively. Similarly, the energy and exergy efficiency is decreased up to 36.8 and 53.2% and 50.4 and 80.6%, respectively. The water cost of the modified solar still is calculated as 0.028 $/kg for the least water thickness.
Environmental Science and Pollution Research - Exposure to light at night, pineal gland impairment, and the environmental pollutant trichloroethylene (TCE) have serious implications for health and... 相似文献
Environmental Science and Pollution Research - Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed... 相似文献
Commercially known Ahmer oxide paints are prepared from raw material mainly composed of red iron oxides (hematite) and iron oxyhydroxides. The raw material used in manufacturing of Ahmer oxide comes from some localities in southwest Sinai such as Abu Thor, Allouga, and El lehian. The adsorption of uranium and other radioelements on iron oxides could make the raw material (red iron oxides) and their products environmentally hazardous. The studied samples were subjected to radiometric analysis using NaI (Tl) gamma-ray spectrometer. The average activity concentration of U, Th, Ra, and K are 108.7, 458.8, 88.8, and 627.5?Bq?kg?1, respectively in raw material and 136.4, 14.6, 58.3, and 95.9?Bq?kg?1 in Ahmer oxide. High values of activity concentrations of 238U, 226Ra, and 40K were recorded in Allouga and El lehian raw material. High radioactivities of Allouga and El lehian raw material are mainly attributed to the presence of torbernite, zircon, and monazite, in addition to adsorbed elemental uranium in Ahmer oxide. absorbed dose rate (D), annual effective dose equivalent, radium equivalent activity (Raeq), external hazard index (Hex), and internal hazard index (Hin), as well as representative gamma index (Iγ) were determined from the activity concentrations of 226Ra, 232Th, and 40K. Some of the studied samples do not satisfy the universal standards. 相似文献