首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
环保管理   1篇
基础理论   4篇
污染及防治   1篇
评价与监测   4篇
社会与环境   2篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2005年   1篇
  2002年   3篇
  1994年   1篇
  1993年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
The developed method is based on cold-induced aggregation microextraction of Se(IV) using the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid as an extractant followed by spectrophotometry determination. The extraction of Se(IV) was performed in the presence of dithizone as the complexing agent. In this method, a very small amount of 1-butyl-3-methylimidazolium hexafluorophosphate was added to the sample solution containing Se-dithizone complex. Then, the solution was kept in a thermostated bath at 50 °C for 4 min. Subsequently, the solution was cooled in an ice bath and a cloudy solution was formed. After centrifuging, the extractant phase was analyzed using a spectrophotometric detection method. Some important parameters that might affect the extraction efficiency were optimized (HCl, 0.6 mol L?1; dithizone, 4.0?×?10?6 mol L?1; ionic liquid, 100 μL). Under the optimum conditions, good linear relationship, sensitivity, and reproducibility were obtained. The limit of detection (LOD) (3Sb/m) was 1.5 μg L?1, and the relative standard deviation (RSD) was 1.2 % for 30 μg L?1 of Se(IV). The linear range was obtained in the range of 5–60 μg L?1. It was satisfactory to analyze rice and various water samples.  相似文献   
12.
The aim of this work is to analyse the performance of a solar energy collector system for water and air heating in real working conditions. Two coupled mathematical models have been developed. One of them describes the thermal behaviour of the Hybrid Solar Collector (HSC) and the second one describes the simultaneous operation of the HSC and of a fully mixed water storage tank. The dependence of the performance of the HSC system on the following three parameters has been studied: (1) water and air mass flow rate; (2) water pipe diameter and air channel height; (3) water storage tank volume. The mathematical models were used to evaluate the HSC system performance during 29 different days, covering all four seasons. A higher water flow rate generally enhances the thermal efficiency of the HSC system, but the enhancement became significantly smaller at higher air flow rates. Positive but small values are recommended for the difference between the fluid temperature at solar collectors exit and the water temperature in the tank. The thermal efficiency of the HSC system is higher on nearly clear sky and decreases in case the amount of clouds on the sky increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号