首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   4篇
  国内免费   1篇
安全科学   10篇
环保管理   36篇
综合类   47篇
基础理论   20篇
污染及防治   18篇
评价与监测   6篇
社会与环境   9篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   9篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2000年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1991年   4篇
  1988年   2篇
  1987年   7篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1970年   2篇
  1969年   2篇
  1968年   6篇
  1967年   4篇
  1966年   2篇
  1965年   1篇
  1962年   1篇
  1959年   1篇
  1957年   2篇
  1956年   1篇
  1955年   3篇
  1954年   4篇
  1953年   2篇
  1952年   1篇
  1951年   1篇
  1948年   1篇
  1942年   2篇
  1938年   1篇
  1935年   1篇
  1930年   1篇
  1929年   1篇
排序方式: 共有146条查询结果,搜索用时 265 毫秒
141.
142.
143.
The COVID-19 pandemic has had an enormous impact on almost all aspects of human society and endeavor; the natural world and its conservation have not been spared. Through a process of expert consultation, we identified and categorized, into 19 themes and 70 subthemes, the ways in which biodiversity and its conservation have been or could be affected by the pandemic globally. Nearly 60% of the effects have been broadly negative. Subsequently, we created a compendium of all themes and subthemes, each with explanatory text, and in August 2020 a diverse group of experienced conservationists with expertise from across sectors and geographies assessed each subtheme for its likely impact on biodiversity conservation globally. The 9 subthemes ranked highest all have a negative impact. These were, in rank order, governments sidelining the environment during their economic recovery, reduced wildlife-based tourism income, increased habitat destruction, reduced government funding, increased plastic and other solid waste pollution, weakening of nature-friendly regulations and their enforcement, increased illegal harvest of wild animals, reduced philanthropy, and threats to survival of conservation organizations. In combination, these impacts present a worrying future of increased threats to biodiversity conservation but reduced capacity to counter them. The highest ranking positive impact, at 10, was the beneficial impact of wildlife-trade restrictions. More optimistically, among impacts ranked 11-20, 6 were positive and 4 were negative. We hope our assessment will draw attention to the impacts of the pandemic and, thus, improve the conservation community's ability to respond to such threats in the future.  相似文献   
144.
145.
Patterns of ozone uptake were related to physiological, morphological, and phenological characteristics of different-sized black cherry trees (Prunus serotina Ehrh.) at a site in central Pennsylvania. Calculated ozone uptake differed among open-grown seedlings, forest gap saplings, and canopy trees and between leaves in the upper and lower crown of saplings and canopy trees. On an instantaneous basis, seedling leaves had the greatest ozone uptake rates of all tree size classes due to greater stomatal conductance and higher concentrations of ozone in their local environment. A pattern of higher stomatal conductance of seedlings was consistent with higher incident photosynthetically-active radiation, stomatal density, and predawn xylem water potentials for seedlings relative to larger trees. However, seedlings displayed an indeterminate pattern of shoot growth, with the majority of their leaves produced after shoot growth had ceased for canopy and sapling trees. Full leaf expansion occurred by mid-June for sapling and canopy trees. Because many of their leaves were exposed to ozone for only part of the growing season, seedlings had a lower relative exposure over the course of the growing season, and subsequently lower cumulative uptake, of ozone than canopy trees and a level of uptake similar to upper canopy leaves of saplings. Visible injury symptoms were not always correlated with patterns in ozone uptake. Visible symptoms were more apparent on seedling leaves in concurrence with their high instantaneous uptake rates. However, visible injury was more prevalent on leaves in the lower versus upper crown of canopy trees and saplings, even though lower crown leaves had less ozone uptake. Lower crown leaves may be more sensitive to ozone per unit uptake than upper crown leaves because of their morphology. In addition, the lower net carbon uptake of lower crown leaves may limit repair and anti-oxidant defense processes.  相似文献   
146.
Dust storm events and their relation to climate changes in Northern China during the past 1000 years were analyzed by using different paleoclimate archives such as ice cores, tree rings, and historical documents. The results show that in the semiarid region, the temperature and precipitation series were significantly negatively correlated to the dust storm frequency on a decadal timescale. Compared with temperature changes, however, there was a closer correlation between precipitation changes and dust storm events on a centennial timescale. At this timescale, precipitation accounts for 40% of the variance of dust fall variations during the last 1700 years, inferring precipitation control on the formation of dust storms. In the western arid region, both temperature and precipitation changes are important forcing factors for the occurrence of dust storms in the region on a centennial timescale. In the eastern arid region, the relationship between dust storm events and climate changes are similar like in the semiarid region. As a result, the effects of climate change on dust storm events were manifested on decadal and centennial timescales during the last millennium. However, there is a phase shift in the relation between climate change and the dust storm frequency. A 1400 years reconstruction of the strength of the Siberian High reveals that long-term variations of spring Siberian High intensity might provide a background for the dynamic conditions for the frequency of historical dust storm events in Northern China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号