首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1724篇
  免费   18篇
  国内免费   43篇
安全科学   25篇
废物处理   112篇
环保管理   164篇
综合类   152篇
基础理论   309篇
环境理论   2篇
污染及防治   581篇
评价与监测   328篇
社会与环境   108篇
灾害及防治   4篇
  2023年   59篇
  2022年   175篇
  2021年   122篇
  2020年   25篇
  2019年   49篇
  2018年   86篇
  2017年   93篇
  2016年   116篇
  2015年   48篇
  2014年   84篇
  2013年   191篇
  2012年   82篇
  2011年   93篇
  2010年   75篇
  2009年   60篇
  2008年   81篇
  2007年   56篇
  2006年   66篇
  2005年   36篇
  2004年   24篇
  2003年   21篇
  2002年   29篇
  2001年   8篇
  2000年   9篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1989年   3篇
  1988年   3篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1966年   3篇
  1965年   2篇
  1964年   4篇
  1962年   2篇
  1961年   5篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   5篇
  1953年   1篇
排序方式: 共有1785条查询结果,搜索用时 0 毫秒
951.
The effect of 24-epibrassinolide seed soaking on imidacloprid residues in green pods and mature seeds of Brassica juncea L. plants was investigated. The activities of the antioxidative enzymes glutathione-S-transferase, glutathione peroxidase, glutathione reductase, ascorbate peroxidase and guaiacol peroxidase, and the content of glutathione were determined. Imidacloprid residues in green pods were analyzed and quantified by gas chromatography-mass spectrometry, revealing that 24-epibrassinolide treatment resulted in a decrease of residues by almost 30%. In mature seeds, no pesticide residues were detected. Activities of all the antioxidative enzymes and glutathione content were found to be high in plants grown in soil amended with 300 mg imidacloprid kg?1 soil, but pre-soaking with 100 nmol L?1 24-epibrassinolide further enhanced the activities of all these enzymes and the glutathione content.  相似文献   
952.

Background

The extensive and intensive uses of organophosphorus insecticide—quinalphos in agriculture, pose a health hazard to animals, humans, and environment because of its persistence in the soil and crops. However, there is no much information available on the biodegradation of quinalphos by the soil micro-organisms, which play a significant role in detoxifying pesticides in the environment; so research is initiated in biodegradation of quinalphos.

Results

A soil bacterium strain, capable of utilizing quinalphos as its sole source of carbon and energy, was isolated from soil via the enrichment method on minimal salts medium (MSM). On the basis of morphological, biochemical and 16S rRNA gene sequence analysis, the bacterium was identified as to be Bacillus thuringiensis. Bacillus thuringiensis grew on quinalphos with a generation time of 28.38 min or 0.473 h in logarithmic phase. Maximum degradation of quinalphos was observed with an inoculum of 1.0 OD, an optimum pH (6.5–7.5), and an optimum temperature of 35–37 °C. Among the additional carbon and nitrogen sources, the carbon source—sodium acetate and nitrogen source—a yeast extract marginally improved the rate of degradation of quinalphos.

Conclusions

Display of degradation of quinalphos by B. thuringiensis in liquid culture in the present study indicates the potential of the culture for decontamination of quinalphos in polluted environment sites.
  相似文献   
953.

Water and soil pollution by toxic heavy metals (HMs) is increasing globally because of increase in population, industrialization and urbanization. It is a burning problem for the public, scientists, academicians and politicians how to tackle the toxic contaminants which jeopardize the environment. One possible solution for pollution abatement is a bioremediation-effective and innovative technology that uses biological systems for treatment of contaminants. Many bacteria synthesize indole-3-acetic acid (IAA) which is a product of l-tryptophan metabolism and belongs to the auxin class of plant growth-promoting hormone. The present study aimed at assessing the resistance pattern of wastewater bacteria against multiple HMs and plant growth promotion activity associated with IAA. A Gram-negative bacterial strain Pseudomonas aeruginosa KUJM was isolated from Kalyani Sewage Treatment Plant. This strain showed the potential to tolerate multiple contaminations such as As(III) (50 mM), As(V) (800 mM), Cd (8 mM), Co (18 mM), Cu (7 mM), Cr (2.5 mM), Ni (3 mM) and Zn (14 mM). The capability of IAA production at different tryptophan concentration (1, 2, 5 and 10 mg mL−1) was determined, and seed germination-enhancing potential was also estimated on lentil (Lens culinaris). Such type of HM-resistant, IAA-producing and seed germination-enhancing P. aeruginosa KUJM offer great promise as inoculants to promote plant growth in the presence of toxic HMs, as well as plant inoculant systems useful for phytoremediation of polluted soils. Hence, P. aeruginosa KUJM finds significant applications in HM-contaminated poor agricultural field as well as in bioremediation of HM-contaminated wastewater system.

  相似文献   
954.
The development activities in mountainous region though provide comfort to the human being and enhance the socioeconomic status of the people but create pressure on the bio-resources. In this paper, the current status of land use/landcover and the vegetation communities of the Solang valley watershed in Himachal Pradesh of Indian western Himalaya has been mapped and presented using remote sensing. This watershed area was dominated by alpine and sub-alpine pastures (30.34%) followed by scree slopes (22.34%) and forests (21.06%). Many tree, shrub, and herb species identified in the study area are among the prioritized species for conservation in the Indian Himalayan Region. Thus, scientific interventions and preparation of action plans based on ecological survey are required for conservation of the Solang valley watershed.  相似文献   
955.
Seasonal observations on water-quality parameters and chlorophyll-a in the coastal waters off Kalpakkam, southeast coast of India, was carried out covering an area of about 30 km(2) to find out the variations in physicochemical properties during a monsoonal cycle of the year. Most of the parameters exhibited a significant spatial and seasonal variation. It revealed that the coastal water was significantly influenced by freshwater input from the nearby backwaters during North-east monsoon and post-monsoon periods. A marginal increase in pH from coast towards offshore was noticed during the observation. Relatively low salinity values were observed during pre and post monsoon when compared to summer. Bottom water was found to be highly turbid during summer and pre-monsoon conditions when compared to surface. This could be attributed to the strong northerly wind and northward current prior to the onset of southwest monsoon. N, P and Si based nutrients are relatively high in their concentration in the bottom water. Nitrate was significantly high during post-monsoon and contributed greatly towards total nitrogen as evident from the statistical correlation. Ammonia concentration was relatively high in the bottom samples during all the seasons except on a few occasions during post-monsoon. In general, phosphate and total phosphorous values remained low and particularly so in the surface water. Higher silicate concentration was observed in the bottom water, and there was a reducing trend towards offshore. High chlorophyll-a values were observed during summer and surface water was found to have higher pigment concentrations as compared to the bottom. Results show that phosphate acts as the limiting factor for phytoplankton production particularly during post-monsoon period whereas; none of the nutrients were found to be limiting the phytoplankton growth during other seasons.  相似文献   
956.
Distribution of arsenic (As) and its compound and related toxicology are serious concerns nowadays. Millions of individuals worldwide are suffering from arsenic toxic effect due to drinking of As-contaminated groundwater. The Bengal delta plain, which is formed by the Ganga?CPadma?CMeghna?CBrahmaputra river basin, covering several districts of West Bengal, India, and Bangladesh is considered as the worst As-affected alluvial basin. The present study was carried out to examine As contamination in the state of Assam, an adjoining region of the West Bengal and Bangladesh borders. Two hundred twenty-two groundwater samples were collected from shallow and deep tubewells of six blocks of Golaghat district (Assam). Along with total As, examination of concentration levels of other key parameters, viz., Fe, Mn, Ca, Na, K, and Mg with pH, total hardness, and SO $_{4}^{2-}$ , was also carried out. In respect to the permissible limit formulated by the World Health Organization (WHO; As 0.01 ppm, Fe 1.0 ppm, and Mn 0.3 ppm for potable water), the present study showed that out of the 222 groundwater samples, 67%, 76.4%, and 28.5% were found contaminated with higher metal contents (for total As, Fe, and Mn, respectively). The most badly affected area was the Gamariguri block, where 100% of the samples had As and Fe concentrations above the WHO drinking water guideline values. In this block, the highest As and Fe concentrations were recorded 0.128 and 5.9 ppm, respectively. Tubewell water of depth 180 ± 10 ft found to be more contaminated by As and Fe with 78% and 83% of the samples were tainted with higher concentration of such toxic metals, respectively. A strong significant correlation was observed between As and Fe (0.697 at p < 0.01), suggesting a possible reductive dissolution of As?CFe-bearing minerals for the mobilization of As in the groundwater of the region.  相似文献   
957.
Animal products like milk and meat are often found to be contaminated with residues of persistent pesticides and other toxic substances. The major source of entry of these compounds to animal body is the contaminated feed and fodder. So, unless the residues are managed at this stage, it is very difficult to prevent contamination in milk and meat. Therefore, the status of residue level of most persistent organochlorinated pesticides (OCP) in feed and fodder should be monitored regularly. The frequency of occurrence and contamination levels of OCP residues in different kinds of animal concentrate feed and straw samples collected from Bundelkhand region of India were determined. Out of 533 total samples, 301 i.e. 56.47% samples were positive containing residues of different OCPs like hexachlorocyclohexane (HCH) isomers, dichlorodiphenyltrichloroethane (DDT) complex, endosulfan and dicofol. Among different HCH isomers, the mean concentration of ??-HCH was highest, and total HCH varied from 0.01 to 0.306 mg kg???1. In case of DDT complex, i.e. DDD, DDE and DDT, the concentration ranged between 0.016 and 0.118 mg kg???1 and the pp| isomers were more frequently encountered than their op| counterparts. Endosulfan was also found in some samples in concentration ranging from 0.009 to 0.237 mg/kg, but dicofol could be recorded in very few samples. Although feed samples were found to contain OC residues, after comparing their levels in positive samples with the limiting values of respective pesticides, only very few were found to exceed the threshold level. Otherwise, they were mostly within safe limits.  相似文献   
958.
The study explains water quality of three important tributaries of the Ganga River in the middle Gangetic plains in India. Seasonal changes in the water quality of the studied rivers: Gandak, Ghaghra, and Sone were observed. During monsoon, several water quality parameters show considerable changes due to increased runoff from the catchments and other seasonal factors. Multivariate discriminant analysis delineated a few parameters responsible for temporal variation in water quality. Seasonal variation in water quality of the Gandak River was rendered by seven parameters??turbidity, sulfate, pH, phosphate, water temperature, total alkalinity, and sodium, while total alkalinity and water temperature were responsible for seasonal discrimination in water quality of Ghaghra River. Water temperature, turbidity, total dissolved solids, total suspended solids, calcium, and phosphate were important for seasonal discrimination in water quality of Sone River. The seasonal changes in water quality of the rivers were due to seasonal effects and catchment characteristics. The discriminant functions classified most of the cases correctly.  相似文献   
959.
Geographic information system (GIS) has become one of the leading tools in the field of hydrogeological science that helps in assessing, monitoring, and conserving groundwater resources. Groundwater is a finite resource, which is being overexploited due to increase in demand over the years leading to decrease in its potentiality. In the present study, DRASTIC model has been used to prepare groundwater vulnerable zone in hard rock aquifer of granitic terrain. The main objective is to determine susceptible zone for groundwater pollution by integrating hydrogeological layers in GIS environment. The layers such as depth of aquifer, recharge, aquifer yield, soil type, topography, vadose zone, and transmissivity are incorporated in the DRASTIC model. The final output of the map shows that around 60% of the area falls under low to no risk of pollution zone. The high risk of pollution zones are mostly present towards the margin of southeastern periphery. The lower part of the basin as well as small area on northern side falls under moderate risk of pollution zone. For the assessment of groundwater pollution zone, 24 groundwater samples have been collected from different vulnerable zones. The chemical analysis of sample shows that the southeastern margin of basin has relatively high concentration of nitrate as compared to other parts of the basin. It is present in high pollution zone as well as moderate pollution zone. The present model can be used for assessment and management of groundwater.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号