首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   9篇
  国内免费   6篇
安全科学   23篇
废物处理   11篇
环保管理   60篇
综合类   62篇
基础理论   112篇
环境理论   1篇
污染及防治   94篇
评价与监测   40篇
社会与环境   9篇
灾害及防治   3篇
  2023年   4篇
  2022年   12篇
  2021年   12篇
  2020年   14篇
  2019年   14篇
  2018年   14篇
  2017年   17篇
  2016年   17篇
  2015年   11篇
  2014年   21篇
  2013年   39篇
  2012年   18篇
  2011年   29篇
  2010年   20篇
  2009年   22篇
  2008年   27篇
  2007年   18篇
  2006年   15篇
  2005年   14篇
  2004年   12篇
  2003年   8篇
  2002年   9篇
  2001年   9篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1968年   1篇
  1961年   2篇
  1960年   1篇
  1954年   1篇
  1937年   1篇
  1936年   1篇
排序方式: 共有415条查询结果,搜索用时 500 毫秒
131.
We tested the effect of near-future CO2 levels (≈490, 570, 700, and 960 μatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 μatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 μatm CO2 (control). In contrast, juveniles reared at 700 and 960 μatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 μatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 μatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator–prey interactions and commercial fisheries.  相似文献   
132.
Current guidelines for instrumenting birds state that external devices should not exceed 3–5% of the birds’ body mass; however, the energetic consequences of carrying any given device mass are likely to vary according to the morphology and ecology of the species concerned. We used a freeware program to estimate the mechanical power requirements of flight at the minimum power speed for 80 species of flying seabird from 8 major groups with payloads of increasing mass. Devices representing 3% of the bird’s body mass resulted in an increase in energy expenditure for flight ranging from 4.67 to 5.71% without accounting for the increase in body drag coefficient associated with external devices. This effect differed within and between seabird lineages with members of the Alcidae and Phalacrocoracidae experiencing the highest energetic costs of any increase in device mass. We propose that device effects on seabirds could be further reduced through consideration of species-specific effects of added payload and drag.  相似文献   
133.
As population modeling is increasingly called upon to guide policy and management, it is important that we understand not only the central tendencies of our study systems, but the consequences of their variation in space and time as well. The invasive plant Alliaria petiolata (garlic mustard) is actively managed in the United States and is the focus of a developing biological control program. Two weevils (Coleoptera: Curculionidae: Ceutorhynchus) that reduce fecundity (C. alliariae) and rosette survival plus fecundity (C. scrobicollis) are under consideration for release pending host specificity testing. We used a demographic modeling approach to (1) quantify variability in A. petiolata growth and vital rates and (2) assess the potential for single- or multiple-agent biocontrol to suppress growth of 12 A. petiolata populations in Illinois and Michigan studied over three plant generations. We used perturbation analyses and simulation models with stochastic environments to estimate stochastic growth rates (lambda(S)) and predict the probability of successful management using either a single biocontrol agent or two agent species together. Not all populations exhibited invasive dynamics. Estimates of lambda(S) ranged from 0.78 to 2.21 across sites, while annual, deterministic growth (lambda) varied up to sevenfold within individual sites. Given our knowledge of the biocontrol agents, this analysis suggests that C. scrobicollis alone may control A. petiolata at up to 63% of our study sites where lambda >1, with the combination of both agents predicted to succeed at 88% of sites. Across sites and years, the elasticity rankings were dependent on lambda. Reductions of rosette survival, fecundity, or germination of new seeds are predicted to cause the greatest reduction of lambda in growing populations. In declining populations, transitions affecting seed bank survival have the greatest effect on lambda. This contrasts with past analyses that varied parameters individually in an otherwise constant matrix, which may yield unrealistic predictions by decoupling natural parameter covariances. Overall, comparisons of stochastic and deterministic growth rates illustrate how analyses of individual populations or years could misguide management or fail to characterize complex traits such as invasiveness that emerge as attributes of populations rather than species.  相似文献   
134.
Range expansion by native and exotic species will continue to be a major component of global change. Anticipating the potential effects of changes in species distributions requires models capable of forecasting population spread across realistic, heterogeneous landscapes and subject to spatiotemporal variability in habitat suitability. Several decades of theory and model development, as well as increased computing power and availability of fine-resolution GIS data, now make such models possible. Still unanswered, however, is the question of how well this new generation of dynamic models will anticipate range expansion. Here we develop a spatially explicit stochastic model that combines dynamic dispersal and population processes with fine-resolution maps characterizing spatiotemporal heterogeneity in climate and habitat to model range expansion of the hemlock woolly adelgid (HWA; Adelges tsugae). We parameterize this model using multiyear data sets describing population and dispersal dynamics of HWA and apply it to eastern North America over a 57-year period (1951-2008). To evaluate the model, the observed pattern of spread of HWA during this same period was compared to model predictions. Our model predicts considerable heterogeneity in the risk of HWA invasion across space and through time, and it suggests that spatiotemporal variation in winter temperature, rather than hemlock abundance, exerts a primary control on the spread of HWA. Although the simulations generally matched the observed current extent of the invasion of HWA and patterns of anisotropic spread, it did not correctly predict when HWA was observed to arrive in different geographic regions. We attribute differences between the modeled and observed dynamics to an inability to capture the timing and direction of long-distance dispersal events that substantially affected the ensuing pattern of spread.  相似文献   
135.
当有机化合物在含有氯的环境下燃烧时,会产生二噁英和呋喃,例如聚氯乙烯(PVC)生产、纸张漂白过程,以及火山爆发等自然原因.二噁英是剧毒物质,并且具有亲脂性,很容易在多种动物体内积累.它们还是潜在的诱变剂和致癌物质.2,3,7,8-四氯二苯并二噁英(TCDD)结构如下:Xevo TQ-S和大气压气相色谱(APGC)组成了一个非常灵敏的检测系统,可以准确测定出限制浓度的二噁英和呋喃.在分析未知浓度的样品时,可能会检测到浓度非常高的化合物.因此,目标化合物的存在会对下一次进样造成样品残留,进而导致定量结果有误.  相似文献   
136.
Many aspects of animal behavior can be socially facilitated, including foraging behavior, exploration behavior, and antipredator behavior. Although larvae of the ringed salamander (Ambystoma annulatum) are not gregarious, they can live in high densities and face intense predation pressure during a short period following hatching. In a predator-recognition experiment, we found that these salamanders responded to chemical cues from dragonfly nymphs (Family: Libellulidae) with appropriate antipredator behavior (decreased activity), and this response was absent when salamanders were exposed to chemical cues from nonpredatory mayfly nymphs (Family: Heptageniidae). In a second experiment, we tested whether antipredator behavior in response to chemical cues of dragonflies could be socially facilitated by larval ringed salamanders. We placed an “observer” salamander into a central arena with four “demonstrator” salamanders behind clear barriers around an arena. The barriers ensured that chemical cues would not be detected by the observer. When demonstrators were exposed to chemical cues from dragonflies, the data were consistent with the hypothesis that both demonstrators and observers decreased activity relative to a blank control. Our results provide evidence that social facilitation can occur in larval ringed salamanders, a nonsocial species.  相似文献   
137.
Fitzpatrick MC  Preisser EL  Porter A  Elkinton J  Waller LA  Carlin BP  Ellison AM 《Ecology》2010,91(12):3448-55; discussion 3503-14
The study of ecological boundaries and their dynamics is of fundamental importance to much of ecology, biogeography, and evolution. Over the past two decades, boundary analysis (of which wombling is a subfield) has received considerable research attention, resulting in multiple approaches for the quantification of ecological boundaries. Nonetheless, few methods have been developed that can simultaneously (1) analyze spatially homogenized data sets (i.e., areal data in the form of polygons rather than point-reference data); (2) account for spatial structure in these data and uncertainty associated with them; and (3) objectively assign probabilities to boundaries once detected. Here we describe the application of a Bayesian hierarchical framework for boundary detection developed in public health, which addresses these issues but which has seen limited application in ecology. As examples, we analyze simulated spread data and the historic pattern of spread of an invasive species, the hemlock woolly adelgid (Adelges tsugae), using county-level summaries of the year of first reported infestation and several covariates potentially important to influencing the observed spread dynamics. Bayesian areal wombling is a promising approach for analyzing ecological boundaries and dynamics related to changes in the distributions of native and invasive species.  相似文献   
138.
Environmental and Ecological Statistics - Teleconnection, the strong dependence between two distant locations, provides interesting information for discovering the structures in spatial data. While...  相似文献   
139.
Felton  Adam  Löfroth  Therese  Angelstam  Per  Gustafsson  Lena  Hjältén  Joakim  Felton  Annika M.  Simonsson  Per  Dahlberg  Anders  Lindbladh  Matts  Svensson  Johan  Nilsson  Urban  Lodin  Isak  Hedwall  P. O.  Sténs  Anna  Lämås  Tomas  Brunet  Jörg  Kalén  Christer  Kriström  Bengt  Gemmel  Pelle  Ranius  Thomas 《Ambio》2020,49(5):1050-1064

The multi-scale approach to conserving forest biodiversity has been used in Sweden since the 1980s, a period defined by increased reserve area and conservation actions within production forests. However, two thousand forest-associated species remain on Sweden’s red-list, and Sweden’s 2020 goals for sustainable forests are not being met. We argue that ongoing changes in the production forest matrix require more consideration, and that multi-scale conservation must be adapted to, and integrated with, production forest development. To make this case, we summarize trends in habitat provision by Sweden’s protected and production forests, and the variety of ways silviculture can affect biodiversity. We discuss how different forestry trajectories affect the type and extent of conservation approaches needed to secure biodiversity, and suggest leverage points for aiding the adoption of diversified silviculture. Sweden’s long-term experience with multi-scale conservation and intensive forestry provides insights for other countries trying to conserve species within production landscapes.

  相似文献   
140.
The chemical composition of secondary organic aerosol (SOA) generated from the ozonolysis of isoprene (C5H8) in the presence of an OH scavenger was examined using high-resolution electrospray ionization mass spectrometry (ESI-MS) in the mass range m/z = 50–1000. The chemical composition of SOA is complex, with more than 1000 assigned peaks observed in the positive and negative ion mode spectra. Only a small fraction of peaks correspond to known products of isoprene oxidation, such as pyruvic acid, glycolic acid, methylglyoxal, etc. The absolute majority of the detected peaks correspond to highly oxidized oligomeric constituents of SOA, with an average O:C molar ratio of 0.6. The corresponding organic mass (OM) to organic oxygen (OO) ratio is 2.4. Approximately 8% of oxygen atoms in SOA are in the form of peroxides, as quantified with an iodide test. Double bond equivalency (DBE) factors, representing the sum of all double bonds and rings, increase by 1 for every 1–2 additional carbon atoms in the molecule. The number of unoxidized CC double bonds is estimated to be less than 10%; the remaining DBE is due to CO carbonyl groups. Kendrick analysis suggests that the prevalent oligomer building blocks are small carbonyls with a C1–C2 skeleton. Formaldehyde (CH2O) is identified as the most common repetitive building block in the observed oligomeric compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号