首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   743篇
  免费   16篇
  国内免费   7篇
安全科学   27篇
废物处理   30篇
环保管理   173篇
综合类   86篇
基础理论   173篇
污染及防治   169篇
评价与监测   51篇
社会与环境   51篇
灾害及防治   6篇
  2022年   7篇
  2021年   14篇
  2020年   12篇
  2019年   11篇
  2018年   19篇
  2017年   20篇
  2016年   18篇
  2015年   20篇
  2014年   17篇
  2013年   82篇
  2012年   30篇
  2011年   42篇
  2010年   25篇
  2009年   24篇
  2008年   41篇
  2007年   48篇
  2006年   35篇
  2005年   18篇
  2004年   19篇
  2003年   38篇
  2002年   24篇
  2001年   10篇
  2000年   14篇
  1999年   5篇
  1998年   10篇
  1997年   9篇
  1996年   9篇
  1995年   8篇
  1994年   18篇
  1993年   11篇
  1992年   4篇
  1991年   6篇
  1990年   10篇
  1989年   4篇
  1988年   5篇
  1986年   6篇
  1985年   9篇
  1984年   6篇
  1983年   12篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有766条查询结果,搜索用时 31 毫秒
41.
This paper summarizes the results of research conducted at Ar-gonne National Laboratory (ANL) to develop and design a novel method for the recovery of CO2 from flue gases. The basic process concept Involves the combustion of a hydrocarbon fuel using a mixture of oxygen and carbon dioxide (or CO2 and H20) rather than air as the oxidant, which results In a product stream that contains primarily CO2 and H2O. This stream Is then dried and conditioned to meet the specifications of the end user, A slip stream of CO2 (or CO2, and H20) is used as a diluent in the combustion chamberto maintain a flame temperature equivalent to the temperature that would otherwise be obtained using air as an oxidant. The cost-effectiveness of the process in recovering C02 is dependent on the scale of the operation, the type of fuel used, the cost of oxygen, and the cost of capital. The sensitivity of the cost of the recovered C02 to these variables Is discussed, and a model for estimating the cost of CO2 recovered using the ANL process Is presented.  相似文献   
42.
Equations are derived from the Gaussian plume mode! and prescribe the critical downwind distance, wind speed, and plume rise values that result in maximum ground-level concentrations (MGLC) under downwash conditions. The derivations apply to bent-over plumes and encompass the Schulman-Scire and Huber-Snyder building downwash treatments.  相似文献   
43.
ABSTRACT

Previous greenhouse gas studies comparing landfilling with combustion of municipal solid waste (MSW) are limited to examinations of the emissions weighted by their relative radiative activity. This paper adds another dimension by analyzing the atmospheric response to these emissions. The heart of the analysis is a time-dependent model using a perturbation analysis of the IS92a results of the Intergovernmental Panel on Climate Change (IPCC). Using as inputs the emissions from the two technologies, the model calculates atmospheric concentration histories. Scenarios for a landfill and a combustor envision each accepting 1000 Mg refuse/day for a 30-year operating period followed by a 70-year postclosure period. The baseline scenario examines the basic greenhouse impact of each technology. The other scenario adds active gas collection at the landfill and energy offset credits for avoided power plant carbon emissions. For both scenarios, CH4 and trace gases from the landfill persist in the atmosphere, and they are relatively potent at forcing IR heating. The combination of these features place the landfill much higher than previously expected on the greenhouse impact scale. For the baseline scenario, the time-integrated radiative forcing from landfilling is 115 times that of combustion, and this ratio is 45 for the second scenario.  相似文献   
44.
Abstract

The U.S. Environmental Protection Agency has established a federal reference method (FRM) for ozone (O3) and allowed for designation of federal equivalent methods (FEMs). However, the ethylene‐chemiluminescence FRM for O3 has been replaced by the UV photometric FEM by most state and local monitoring agencies because of its relative ease of operation. Accumulating evidence indicates that the FEM is prone to bias under the hot, humid, and stagnant conditions conducive to high O3 formation. This bias may lead to overreporting hourly O3 concentrations by as much as 20–40 ppb. Measurement bias is caused by contamination of the O3 scrubber, a problem that is not detected by dry air calibration. An adequate wet test has not been codified, although a procedure has been proposed for agency consideration. This paper includes documentation of laboratory tests quantifying specific interferant responses, collocated ambient FRM/FEM monitoring results, and smog chamber comparisons of the FRM and FEMs with alternative scrubber designs. As the numbers of reports on monitor interferences have grown, interested parties have called for agency recognition and correction of these biases.  相似文献   
45.
Abstract

This paper presents an overview of a major, long-term program for tropospheric gas and aerosol research in the southeastern United States. Building on three existing ozone (O3)-focused research sites begun in mid-1992, the Southeastern Aerosol Research and Characterization Study (SEARCH) was initiated in mid-1998 as a 7-year observation and research program with a broader focus including aerosols and an expanded geographical coverage in the Southeast. The monitoring network comprises four urban-rural (or urban-suburban) site pairs at locations along the coast of the Gulf of Mexico and inland, including two moderately sized and two major urban areas (Pensacola, FL; Gulfport, MS; Atlanta, GA; and Birmingham, AL). The sites are equipped with an extensive suite of instruments for measuring particulate matter (PM), gases relevant to secondary O3 and the production of secondary aerosol particles, and surface meteorology. The measurements taken to date have added substantially to the knowledge about the temporal behavior and geographic variability of tropospheric aerosols in the Southeast. Details are presented in four papers to follow.  相似文献   
46.
This paper compiles a detailed set of in situ chemical oxidation (ISCO) lessons learned pertaining to design, execution, and safety based on global experiences over the last 20 years. While the benefits of a “correct” application are known (e.g., cost effectiveness, speed, permanence of treatment), history also provides examples of a variety of “incorrect” applications. These provide an opportunity to highlight recurring themes that resulted in failures. ISCO is, and will continue to provide, an important remedial tool for site remediation, particularly as a component of a multifaceted approach for addressing large and complex sites. Future success, however, requires an objective understanding of both the benefits and the limitations of the technology. The ability to learn from the mistakes of the past provides an opportunity to eliminate, or at least minimize, them in the future. Over the last 25 years of ISCO application, process understanding and knowledge have improved and evolved. This paper combines a thorough discussion of lessons learned through decades of ISCO implementation throughout all aspects of ISCO projects with an analysis of changes to the ISCO remediation market. By discussing the interplay of these two themes and providing recommendations from collective lessons learned, we hope to improve the future of safe, cost‐effective, and successful applications of ISCO.  相似文献   
47.
The National Flood Interoperability Experiment (NFIE) was an undertaking that initiated a transformation in national hydrologic forecasting by providing streamflow forecasts at high spatial resolution over the whole country. This type of large‐scale, high‐resolution hydrologic modeling requires flexible and scalable tools to handle the resulting computational loads. While high‐throughput computing (HTC) and cloud computing provide an ideal resource for large‐scale modeling because they are cost‐effective and highly scalable, nevertheless, using these tools requires specialized training that is not always common for hydrologists and engineers. In an effort to facilitate the use of HTC resources the National Science Foundation (NSF) funded project, CI‐WATER, has developed a set of Python tools that can automate the tasks of provisioning and configuring an HTC environment in the cloud, and creating and submitting jobs to that environment. These tools are packaged into two Python libraries: CondorPy and TethysCluster. Together these libraries provide a comprehensive toolkit for accessing HTC to support hydrologic modeling. Two use cases are described to demonstrate the use of the toolkit, including a web app that was used to support the NFIE national‐scale modeling.  相似文献   
48.
This unique study evaluates the cumulative 16‐year lifetime performance of a wetland retention basin designed to treat stormwater runoff. Sediment cores were extracted prior to basin excavation and restoration to evaluate accretion rates and the origin of materials, retention characteristics of fine particulate matter, and overall pollutant removal efficiency. The sediment and organic layers together accreted 3.2 cm of depth per year, and 7.0 kg/m2/yr of inorganic material. Average annual accretion rates in g/m2/yr were as follows: C, 280; N, 17.7; P, 3.74; S, 3.80; Fe, 194; Mn, 2.68; Ca, 30.8; Mg, 30.7; K, 12.2; Na, 2.54; Zn, 0.858; Cu, 0.203; and B, 0.03. The accretion of C, N, P and sediment was comparable to nonwastewater treatment wetlands, overall, and relatively efficient for stormwater treatment wetlands. Comparison of particle size distribution between sediment cores and suspended solids in stormwater runoff indicated the wetland was effective at removing fine particles, with sediment cores containing 25% clay and 56% silt. A majority of the accretion of most metals and P could be attributed to efficient trapping of allochthonous material, while over half the accretion of C and N could be attributed to accumulation of autochthonous organic matter. Stormwater treatment was shown to be effective when physical properties of a retention basin are combined with the biological processes of a wetland, although sediment accretion can be relatively rapid.  相似文献   
49.
In this paper we address two important aspects of micro-scale urban airflow model evaluation: (a) the identification of key flow features as dictated by the physics of the problem and as captured by the simulations, and (b) the comparison of important model output parameters (mean flows and fluctuations) with experimental data. A series of mesh-adaptive large eddy simulations (LES) was carried out for the study of air flows within two intersecting street canyons with varying building configurations. The novelty of the approach lies in the combination of LES with mesh adaptivity, which allows a variable-filter length and the implementation of an anisotropic eddy-viscosity model. Both coarse and fine-mesh simulations were carried out, using single and parallel-processor systems respectively. The simulations showed clearly that the expected flow patterns such as the street canyon recirculation and the street-mouth vortices, as well as the exchange of air flow at the street intersections, can readily be captured by the mesh-adaptive LES.In addition, the detailed comparisons of mean flows and fluctuations of the resolved velocity field with the measured data showed that the simulation results agreed well with the patterns and trends of the wind tunnel measurements. In most cases the finer-mesh simulations improved considerably the accuracy of the mean flows, especially for the symmetrical configuration. The improvement in the predicted fluctuations was less obvious, with several detector locations underpredicting the measured values, although the overall comparison was also satisfactory. The typical errors for the mean flows for all three building configurations were less than 30%, whilst for the velocity fluctuations less that 40%. Both the simulated means flows and turbulence levels were generally more accurate in the streets parallel to the wind (streamwise direction) than in the streets normal to the wind.  相似文献   
50.
The distributions of nanoparticles (below 300 nm in diameter) change rapidly after emission from the tail pipe of a moving vehicle due to the influence of transformation processes. Information on this time scale is important for modelling of nanoparticle dispersion but is unknown because the sampling frequencies of available instruments are unable to capture these rapid processes. In this study, a fast response differential mobility spectrometer (Cambustion Instruments DMS500), originally designed to measure particle number distributions (PNDs) and concentrations in engine exhaust emissions, was deployed to measure particles in the 5–1000 nm size range at a sampling frequency of 10 Hz. This article presents results of two separate studies; one, measurements along the roadside in a Cambridge (UK) street canyon and, two, measurements at a fixed position (20 cm above road level), centrally, in the wake of a single moving diesel-engined car. The aims of the first measurements were to test the suitability and recommend optimum operating conditions of the DMS500 for ambient measurements. The aim of the second study was to investigate the time scale over which competing influences of dilution and transformation processes (nucleation, condensation and coagulation) affect the PNDs in the wake of a moving car. Results suggested that the effect of transformation processes was nearly complete within about 1 s after emission due to rapid dilution in the vehicle wake. Furthermore, roadside measurements in a street canyon showed that the time for traffic emissions to reach the roadside in calm wind conditions was about 45 ± 6 s. These observations suggest the hypothesis that the effects of transformation processes are generally complete by the time particles are observed at roadside and the total particle numbers can then be assumed as conserved. A corollary of this hypothesis is that complex transformation processes can be ignored when modelling the behaviour of nanoparticles in street canyons once the very near-exhaust processes are complete.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号