首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   6篇
  国内免费   6篇
安全科学   17篇
废物处理   32篇
环保管理   29篇
综合类   28篇
基础理论   49篇
环境理论   1篇
污染及防治   78篇
评价与监测   44篇
社会与环境   22篇
灾害及防治   4篇
  2023年   8篇
  2022年   33篇
  2021年   30篇
  2020年   8篇
  2019年   9篇
  2018年   16篇
  2017年   20篇
  2016年   27篇
  2015年   13篇
  2014年   9篇
  2013年   39篇
  2012年   14篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   9篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有304条查询结果,搜索用时 0 毫秒
301.
Methane (CH4) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO2), risking human health and the environment. Microbial CH4 oxidation in landfill cover soils may constitute a means of controlling CH4 emissions. The study was intended to quantify CH4 and CO2 emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH4 oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH4 to CO2 emissions was 25.4 %, indicating higher CO2 emissions than CH4 emissions. Also, the average CH4 oxidation in the landfill cover soil was 52.5 %. The CH4 and CO2 emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH4 emissions and oxidation (R 2?=?0.46). It can be concluded that the variation in the CH4 oxidation was mainly attributed to the properties of the landfill cover soil.  相似文献   
302.
Urbanization dynamics are commonly subjected to powerful market forces, only partly managed by land-use plans. The density, location and pattern of urbanized areas affect rainfall-runoff relations. Consequently, it is essential to understand future impacts of urbanization on runoff and produce focused regulation. The goal was to analyze land-cover scenarios and their impact on runoff in an urbanized watershed in Israel. Present and predicted land-cover scenarios in a densely populated watershed were produced. The runoff response to rainfall was then simulated using a hydrological model. The impact of implementing afforestation and quarrying national outline plans was considered. By the year 2050, 50% of the watershed will be urbanized with a linear increase in runoff response. Afforestation and quarrying plans show little effect on runoff, although quarries may decrease runoff through percolation. As urbanization is expected to continue spreading in adjacent watersheds, statutory measures should be applied to mitigating runoff.  相似文献   
303.
Many studies have conducted to determine the best management practice to reduce the mobility and phytoavailability of the trace metals in contaminated soils. In this study, geochemical speciation and phytoavailability of Zn for sunflower were studied after application of nanoparticles (SiO2 and zeolite, with an application rate of 200 mg kg?1) and bacteria [Bacillus safensis FO-036b(T) and Pseudomonas fluorescens p.f.169] to a calcareous heavily contaminated soil. Results showed that the biotic and abiotic treatments significantly reduced the Zn concentration in the aboveground to non-toxicity levels compared to the control treatment, and the nanoparticle treatments were more effective than the bacteria and control treatments. The concentration of CaCl2-extractable Zn in the treated soils was significantly lower than those of the control treatment. The results of sequential extraction showed that the maximum portion of total Zn belonged to the fraction associated with iron and manganese oxides. On the contrary, the minimum percent belonged to the exchangeable and water-soluble Zn (F1). From the environmental point of view, the fraction associated with iron and manganese oxides is less bioavailable than the F1 and carbonated fractions. On the basis of plant growth promotion, simultaneous application of the biotic and abiotic treatments significantly increased the aboveground dry biomass yield and also significantly reduced the CaCl2-extractable form, uptake by aboveground and translocation factor of Zn compared to the control treatment. Therefore, it might be suggested as an efficient strategy to promote the plant growth and reduce the mobile and available forms of toxic metals in calcareous heavily contaminated soils.  相似文献   
304.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号