首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   4篇
  国内免费   8篇
安全科学   9篇
废物处理   26篇
环保管理   53篇
综合类   87篇
基础理论   138篇
环境理论   4篇
污染及防治   191篇
评价与监测   30篇
社会与环境   31篇
  2023年   7篇
  2022年   7篇
  2021年   8篇
  2020年   8篇
  2019年   3篇
  2018年   21篇
  2017年   10篇
  2016年   12篇
  2015年   13篇
  2014年   20篇
  2013年   44篇
  2012年   20篇
  2011年   48篇
  2010年   30篇
  2009年   34篇
  2008年   25篇
  2007年   41篇
  2006年   31篇
  2005年   21篇
  2004年   30篇
  2003年   22篇
  2002年   24篇
  2001年   10篇
  2000年   7篇
  1999年   2篇
  1998年   12篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1966年   1篇
  1964年   1篇
  1963年   1篇
  1960年   2篇
  1959年   1篇
  1957年   2篇
  1956年   2篇
  1955年   4篇
  1954年   1篇
  1952年   1篇
  1951年   1篇
  1922年   3篇
排序方式: 共有569条查询结果,搜索用时 187 毫秒
461.
Within a European biomonitoring programme, Italian ryegrass (Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000–2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.  相似文献   
462.
In this paper, the NOx emission scaling factors applied over the 2001 National Emissions Inventory (NEI) are estimated through a four-dimensional variational (4D-Var) approach using SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) tropospheric NO2 columns measured during summer 2004. In the “top-down” approach, two-month average NO2 columns are assimilated into a regional chemical transport model (CTM), STEM, using different assimilation setups. In a basic setup, NOx emissions are adjusted by assimilating the NO2 columns. A more general setup of emission inversion allows the initial O3 concentrations be adjusted along with the NOx emissions. A final case is set up to assimilate both the NO2 columns and O3 measurement from various platforms while allowing adjustments of both the NOx emissions and the initial O3 concentrations. It is found that the addition of O3 measurements did not improve the NOx emission inversion. With the NOx emission at surface and upper levels being adjusted separately, results from four cases show that the elevated NOx emission reduction ranges from 8.9% to 11.4%, and the surface NOx emission reduction is up to 6.6%. All the cases show NOx emission reduction in Ohio valley and Washington, District of Columbia areas.  相似文献   
463.
Radon-222 exhalation from the ground surface depends upon a number of variables such as the 226Ra activity concentration and its distribution in soil grains; soil grain size; soil porosity, temperature and moisture; atmospheric pressure, rainfall and temperature. In this study, 222Rn exhalation flux density measurements within and around the Ranger uranium mine in northern Australia were performed to investigate the effect of these variables within a tropical region. Measurements were taken at the waste rock dumps, ore stockpiles, mine pits, and at sites where effluent water with elevated 226Ra concentration has been spray irrigated over land, as well as at sites outside the mine. The sites selected represented a variety of geomorphic regions ranging from uranium-bearing rocks to ambient soils. Generally, wet season rains reduced 222Rn exhalation but at a few sites the onset of rains caused a step rise in exhalation flux densities. The results show that parameters such as 226Ra activity concentration, soil grain size and soil porosity have a marked effect on 222Rn flux densities. For similar geomorphic sites, 226Ra activity concentration is a dominant factor, but soil grain size and porosity also influence 222Rn exhalation. Surfaces with vegetation showed higher exhalation flux densities than their barren counterparts, perhaps because the associated root structure increases soil porosity and moisture retention. Repeated measurements over one year at eight sites enabled an analysis of precipitation and soil moisture effects on 222Rn exhalation. Soil moisture depth profiles varied both between seasons and at different times during the wet season, indicating that factors such as duration, intensity and time between precipitation events can influence 222Rn flux densities considerably.  相似文献   
464.
Atmospheric particulate matter (PM) is an air-suspended mixture of solid and liquid particles that vary in size, shape, and chemical composition. Long-term exposure to elevated concentrations of fine atmospheric particles is considered to pose a health threat to humans and animals. In this context, it has been hypothesized that toxic chemicals such as polycyclic aromatic hydrocarbons (PAHs) play an important role. Some PAHs are known to be carcinogenic and it has been shown that carcinogenic effects of PAHs are mediated by the aryl hydrocarbon receptor (AhR). In this study, PM1 was collected at a rural and an urban traffic site during an intense winter smog period, in which concentration of PM1 often exceeded 50 μg m?3. We applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify PM1-associated chemicals that induce AhR-mediated gene expression. This activity was expressed as CALUX equivalents of 2,3,7,8-tetrachlorodibenzodioxin (PM-TCDD-CEQs). In addition, concentrations of PAHs in the PM1 extracts were determined using gas chromatography/high-resolution mass spectrometry. Concentrations of PM-TCDD-CEQs ranged from 10 to 85 pg m?3 and from 19 to 87 pg m?3 at the urban and rural site, respectively. By the use of known relative potency factors, the measured concentration of a PAH was converted into a PAH-TCDD-CEQ concentration. ΣPAH-TCDD-CEQ and PM-TCDD-CEQ were highly correlated at both sites (r2 = 0.90 and 0.69). The calculated ΣPAH-TCDD-CEQs explain between 2% and 20% of the measured PM-TCDD-CEQs. Benzo[k]fluoranthene was the most important PAH causing approximately 60% of the total ΣPAH-TCDD-CEQ activity. In contrast to NO, CO, PM10, and PM1, the concentration of PM-TCDD-CEQs showed no significant difference between the two sites. No indications were found that road traffic emissions caused elevated concentrations of PM-TCDD-CEQs at the urban traffic site.  相似文献   
465.
Increasing soil carbon (C) storage is crucial to addressing climate change and ensuring food security. The C sequestration potential of the world’s cropland soil is 0.4–0.8 Pg soil C year?1, which may be achieved through the adoption of recommended management practices (RMPs), including fertilizer management. This study aimed to quantitatively evaluate the influence of long-term application of different fertilizers and straw retention on soil organic carbon (SOC) storage, to compare the calculated response ratios with Intergovernmental Panel on Climate Change (IPCC)-recommended default relative stock change factors, and to propose recommendations for enhancing SOC sequestration. The meta-analysis indicated that the long-term application of chemical fertilizers (CF), organic fertilizers (OF), combined chemical and organic fertilizers (CFOF), and straw return (SR) significantly enhanced the SOC storage. Response ratios varied significantly (p < 0.05) across different fertilization measures and climatic zones, and was sensitive to the initial SOC content. The mean response ratio was 0.94 for no fertilizer (NF), 1.08 for CF, 1.48 for OF, 1.38 for CFOF, and 1.28 for SR. When IPCC default values for response ratios were applied, SOC storage with OF and CFOF treatments in warm temperate regions with a dry climate was underestimated by 26%, and in the cool temperate region with a moist climate was overestimated by 25% (p < 0.05). Analysis showed that sustained application of organic fertilizers and straw return could be a beneficial measures to mitigate climate change and ensure food security in China. Our findings highlight the importance of deriving SOC stock change factors for a detailed classification of cropland by fertilizer management, climate, and soil types in order to more accurately reflect the effects of policy measures.  相似文献   
466.
Carbon flows and carbon use in the German anthroposphere: An inventory   总被引:2,自引:0,他引:2  
Today, global climate change is one of the most urgent environmental problems. The atmospheric concentration of carbon dioxide (CO2) has to be stabilised by significant reductions of CO2 emissions in the next decades to keep the expected temperature rise within tolerable borders. Efforts exceeding the implemented measures to reduce CO2 emissions in Germany are desirable. An important pre-condition for such measures is a scientific-based inventory of the sources, sinks, and use of carbon.In this paper, we present CarboMoG, i.e. Carbon Flow Model of Germany. CarboMoG is a carbon flow model covering carbon flows, carbon sources and sinks in Germany and the German anthroposphere, showing concurrent energy and non-energy use of carbon sources.The model consists of seven modules in German anthroposphere following the German classification of economic sectors. Carbon flows to and from atmosphere and lithosphere as well as imports and exports were included into the model. The model comprises roughly 220 material flows determined based on material flow procedures for the base year 2000.Main sources of carbon are fossil energy carriers from lithosphere and uptake of CO2 by crops (52% resp. 48% of all carbon sources). The model calculations show that import of energy carriers dominates total carbon import to Germany (82%). Total non-energy use of carbon in Germany is significantly higher than energy use (386 Mt C and 230 Mt C, resp.). Carbon throughput of Industry is greatest (about 224 Mt C input), followed by Energy (about 129 Mt C input). Agriculture and Forestry & Industry show the highest figure for non-energy use of carbon, energy use of carbon is largest in the Energy sector. Emissions of CO2 to atmosphere account for 94% of all carbon flows to sinks in Germany. Carbon accumulates in German anthroposphere 5 Mt C in 2000.  相似文献   
467.
The low-cost, plant-based phytoextraction technique has often been described as a promising technique to remediate heavy metal contaminated agricultural land. The application of chelating agents has shown positive effects in increasing the solubility of heavy metals in soil and therefore in enhancing phytoextraction. This paper gives an overview of the chelating agents applied in recent studies. Various synthetic aminopolycarboxylic acids, such as ethylene diamine tetraacetic acid, and natural ones such as, ethylene diamine disuccinate and nitrilotriacetic acid, are described. Additionally, results of the application of natural low molecular weight organic acids, such as citric and tartaric acid are given. The effectiveness of these different chelating agents varies according to the plant and the heavy metals used. Furthermore, a focus is laid on the chelating agents fate after application and on its toxicity to plants and soil microorganisms, as well as it degradation. The rate of degradation is of great importance for the future of chelate assisted phytoextraction as it has a direct impact on the leaching probability. An effective prevention of leaching will be crucial for the acceptance and the economic breakthrough of enhanced phytoextraction, but a satisfactory solution to this key issue has so far not been found. Possibly further experiments in the field of enhanced phytoextraction will be able to solve this major problem, but over decades various greenhouse experiments and recently field experiments have resulted in different observations. Therefore, it is questionable if further research in this direction will lead to a promising solution. Phytoextraction has possibly reached a turning point in which it should distance itself from chelate assisted phytoextraction and focus on alternative options.  相似文献   
468.
469.
The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 microg l(-1) as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t1/2) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t1/2 values could not be determined for MBT and TPhT (t1/2>18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively.  相似文献   
470.
The incorporation of xenobiotics into soil, especially via covalent bonds or sequestration has a major influence on the environmental behavior including toxicity, mobility, and bioavailability. The incorporation mode of 4-chloro-2-methylphenoxyacetic acid (MCPA) into organo-clay complexes has been investigated under a low (8.5 mg MCPA/kg soil) and high (1000 mg MCPA/kg soil) applied concentration, during an incubation period of up to 120 days. Emphasis was laid on the elucidation of distinct covalent linkages between non-extractable MCPA residues and humic sub-fractions (humic acids, fulvic acids, and humin). The cleavage of compounds by a sequential chemical degradation procedure (OH?, BBr3, RuO4, TMAH thermochemolysis) revealed for both concentration levels ester/amide bonds as the predominate incorporation modes followed by ether linkages. A possible influence of the soil microbial activity on the mode of incorporation could be observed in case of the high level samples. Structure elucidation identified MCPA as the only nonextractable substance, whereas the metabolite 4-chloro-2-methylphenol was additionally found as bioavailable and bioaccessible compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号