首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17204篇
  免费   188篇
  国内免费   140篇
安全科学   389篇
废物处理   699篇
环保管理   2166篇
综合类   3743篇
基础理论   4036篇
环境理论   9篇
污染及防治   4227篇
评价与监测   1108篇
社会与环境   1089篇
灾害及防治   66篇
  2022年   132篇
  2021年   152篇
  2019年   129篇
  2018年   234篇
  2017年   236篇
  2016年   362篇
  2015年   283篇
  2014年   408篇
  2013年   1197篇
  2012年   461篇
  2011年   716篇
  2010年   533篇
  2009年   629篇
  2008年   729篇
  2007年   761篇
  2006年   671篇
  2005年   555篇
  2004年   575篇
  2003年   558篇
  2002年   514篇
  2001年   631篇
  2000年   403篇
  1999年   310篇
  1998年   196篇
  1997年   217篇
  1996年   238篇
  1995年   240篇
  1994年   248篇
  1993年   227篇
  1992年   209篇
  1991年   211篇
  1990年   200篇
  1989年   177篇
  1988年   173篇
  1987年   157篇
  1986年   158篇
  1985年   150篇
  1984年   172篇
  1983年   173篇
  1982年   177篇
  1981年   150篇
  1980年   139篇
  1979年   124篇
  1978年   138篇
  1977年   116篇
  1976年   105篇
  1975年   109篇
  1974年   118篇
  1971年   98篇
  1967年   101篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
971.
ABSTRACT

Researchers have applied open path optical sensing techniques to a variety of workplace and environmental monitoring problems. Usually these data are reported in terms of a path-average (or path-integrated) concentration. When assessing potential human exposures along a beam path, this path-average value is not always informative, since concentrations along the path can vary substantially from the beam average. The focus of this research is to arrive at a method for estimating the upper-bound in contaminant concentrations over a fixed open beam path. The approach taken here uses a statistical model to estimate an upper-bound concentration based on a combination of the path-average and a measure of the spatial variability computed from point samples along the beam path. Results of computer simulations and experimental testing in a controlled ventilation chamber indicate that the model produced conservative estimates for the maximum concentration along the beam path. This approach may have many applications for open path monitoring in workplaces or wherever maximum concentrations are a concern.  相似文献   
972.
ABSTRACT

This paper presents a new approach to quantify emissions from fugitive gaseous air pollution sources. The authors combine Computed Tomography (CT) with Path-Integrated Optical Remote Sensing (PI-ORS) concentration data in a new field beam geometry. Path-integrated concentrations are sampled in a vertical plane downwind from the source along several radial beam paths. An innovative CT technique, which applies the Smooth Basis Function Minimization method to the beam data in conjunction with measured wind data, is used to estimate the total flux from the fugitive source. The authors conducted a synthetic data study to evaluate the proposed methodology under different meteorological conditions, beam geometry configurations, and simulated measurement errors. The measurement errors were simulated based on data collected with an Open-Path Fourier Transform Infra-Red system. This approach was found to be robust for the simulated errors and for a wide range of fluctuating wind directions. In the very sparse beam geometry examined (eight beam paths), successful emission rates were retrieved over a 70° range of wind directions under extremely large measurement error conditions.  相似文献   
973.
ABSTRACT

Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped with ammonia to simulate a high NO combustion process. Emissions of NO, oxygen, carbon dioxide, carbon monoxide, and particulate matter were measured. The tests varied the nominal primary NO level from 600 to 1,200 ppm and the primary stoichiometry from 1.1 to 1.2, and used both natural gas and TDF as reburn fuels. The reburn injection rate was varied to achieve 8–20% of the total heat input from the reburn fuel. NO emissions reductions ranged between 20 and 63% when using TDF, depending upon the rate of TDF injection, primary NO, and primary stoichiometry. NO emission reductions when using natural gas as the reburn fuel were consistently higher than those when using TDF. While additional work remains to optimize the process and evaluate costs, TDF has been shown to have the potential to be a technically viable reburning fuel.  相似文献   
974.
ABSTRACT

Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 |j.m in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 |j.m in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM25+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agreed fairly well with that of NiSO4, while most of the V spectra closely resembled that of vanadyl sulfate (VO?SO4?xH2O). The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. Arsenic was present as an arsen-ate (As+5). X-ray diffraction patterns of the PM2.5 fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the loss on ignition (LOI) ranging from 64 to 87% for the PM2.5 fraction and from 88 to 97% for the PM2.5+ fraction. Based on 13C nuclear magnetic resonance (NMR) analysis, the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.  相似文献   
975.
ABSTRACT

In this study, continuous data of PM10 (particles with aerodynamic diameter <10 u,m) concentration measurements for a 4-yr period were analyzed. These measurements have been carried out in the Eordea Basin, an industrial area in the northwestern mountainous region of Greece. The annual, monthly, and diurnal patterns are presented and investigated regarding the prevailing meteorological conditions and atmospheric processes that affect the ambient concentrations of PM10. The effect of wind on controlling PM10 concentration is also discussed. Based on the data analysis, an attempt is made to provide useful information about air quality levels, taking into account U.S. Environmental Protection Agency air quality standards.  相似文献   
976.
ABSTRACT

Researchers from the National Renewable Energy Laboratory recently conducted a pilot-scale study at McClellan Air Force Base (AFB) in Sacramento, CA. The objective of the test was to determine the effectiveness of an ambient-temperature, solar-powered photocatalytic oxidation treatment unit for destroying emissions of chlorinated organic compounds from an air stripper. This paper reports test results and discusses applications and limitations of the technology.

A 10-standard-cubic-foot-per-minute (SCFM) (28.3 L/min) slip stream of air from an air stripper at Operative Unit 29-31 at McClellan AFB was passed through a reactor that contained a lightweight, perforated, inert support coated with photoactive titanium dioxide. The reactor faced south and was tilted at a 45° angle from vertical so that the light-activated catalyst received most of the available sunlight. An online portable gas chro-matograph with two identical columns simultaneously analyzed the volatile organic compounds contained in the reactor inlet and outlet air streams. Summa canister grab samples of the inlet and outlet were also collected and sent to a certified laboratory for U.S. Environmental

Protection Agency Method TO-14 analysis and verification of our field analyses. Three weeks of testing demonstrated that the treatment system's destruction and removal efficiencies (DREs) are greater than 95% at 10 SCFM with UV intensities at or greater than 1.5 milliwatts/square centimeter (mW/cm2). DREs greater than 95% at 20 SCFM were obtained under conditions where UV irradiation measured at or greater than 2 mW/cm2. In Sacramento, this provided 6 hours of operation per clear or nearly clear day in April. A solar tracking system could extend operating time. The air stream also contained trace amounts of benzene. We observed no loss of system performance during testing.  相似文献   
977.
ABSTRACT

Three-dimensional air quality models (AQMs) represent the most powerful tool to follow the dynamics of air pollutants at urban and regional scales. Current AQMs can account for the complex interactions between gas-phase chemistry, aerosol growth, cloud and scavenging processes, and transport. However, errors in model applications still exist due in part to limitations in the models themselves and in part to uncertainties in model inputs. Four-dimensional data assimilation (FDDA) can be used as a top-down tool to validate several of the model inputs, including emissions inventories, based on ambient measurements. Previously, this FDDA technique was used to estimate adjustments in the strength and composition of emissions of gas-phase primary species and O3 precursors.

In this paper, we present an extension to the FDDA technique to incorporate the analysis of particulate matter (PM) and its precursors. The FDDA approach consists of an iterative optimization procedure in which an AQM is coupled to an inverse model, and adjusting the emissions minimizes the difference between ambient measurements  相似文献   
978.
Abstract

Observations of the mass and chemical composition of particles less than 2.5 μm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4 2-) and carbonaceous material in PM2.5 were each ~50% for cleaner air (PM2.5 < 10 μg/m3) but changed to ~60% and ~20%, respectively, for more polluted air (PM2.5 > 30 μg/m3). This signifies the role of SO4 2- in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4 2? is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 ± 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached ~45 μg/m3, visual range dropped to ~5 km, and aerosol water likely contributed to ~40% of the light extinction coefficient.  相似文献   
979.
ABSTRACT

Aerosol light absorption as black carbon (BC) was measured from November 19, 1995, to February 6, 1996, at a location 0.65 km downwind of the center of McMurdo Station on the Antarctic coast. The results show a bimo-dal frequency distribution of BC concentrations. Approximately 65% of the measurements were found in a mode at a low range of concentrations centered at ~20 ng/m3. These concentrations are higher than those found at other remote Antarctic locations and probably represent contamination from the station. The remaining measurements were in a high-concentration mode (BC ~300 ng/m3), indicating direct impact of local emissions from combustion activities at the station. High values of BC were associated with winds from the direction of the station, and the BC flux showed a clear directionality. Maximum BC concentrations occurred between 7:00 and 11:00 a.m. The "polluted" mode accounted for more than 80% of the BC frequency-weighted impact at this location.  相似文献   
980.
ABSTRACT

In order to characterize typical indoor exposures to chemicals of interest for research on breast cancer and other hormonally mediated health outcomes, methods were developed to analyze air and dust for target compounds that have been identified as animal mammary carcinogens or hormonally active agents and that are used in commercial or consumer products or building materials. These methods were applied to a small number of residential and commercial environments to begin to characterize the extent of exposure to these classes of compounds. Phenolic compounds, including nonylphenol, octylphenol, bisphenol A, and the methoxychlor metabolite 2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), were extracted, derivatized, and analyzed by gas chromatography/mass spectrometry (GC/MS)–selective ion monitoring (SIM). Selected phthalates, pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were extracted and analyzed by GC/MS-SIM. Residential and workplace samples showed detectable levels of twelve pesticides in dust and seven in air samples. Phthalates were abundant in dust (0.3524 μg/g) and air (0.005-2.8 μg/m3). Nonylphenol and its mono- and di-ethoxylates were prevalent in dust (0.82-14 μg/g) along with estrogenic phenols such as bisphenol A and o-phenyl phenol. In this 7-sample pilot study, 33 of 86 target compounds were detected in dust, and 24 of 57 target compounds were detected in air. In a single sample from one home, 27 of the target compounds were detected in dust and 15 in air, providing an indication of chemical mixtures to which humans are typically exposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号