首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   2篇
  国内免费   6篇
安全科学   1篇
废物处理   5篇
环保管理   12篇
综合类   19篇
基础理论   30篇
污染及防治   40篇
评价与监测   21篇
社会与环境   8篇
  2023年   1篇
  2022年   8篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   3篇
  2015年   2篇
  2014年   12篇
  2013年   14篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   8篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
101.
The environmental fate and behaviour of titanium dioxide (TiO(2)) nanoparticles is a rapidly expanding area of research. There is a paucity of information regarding toxic effect of TiO(2) nanoparticles in plants and to certain extent in humans. The present study focuses on the effect of exposure of TiO(2) nanoparticles in two trophic levels, plant and human lymphocytes. The genotoxicity of TiO(2) nanoparticles was evaluated using classical genotoxic endpoints, comet assay and DNA laddering technique. DNA damaging potential of TiO(2) nanoparticles in Allium cepa and Nicotiana tabacum as representative of plant system could be confirmed in the comet assay and DNA laddering experiments. In Allium micronuclei and chromosomal aberrations correlated with the reduction in root growth. We detected increased level of malondialdehyde (MDA) concentration at 4mM (0.9 μM) treatment dose of TiO(2) nanoparticles in Allium cepa. This indicated that lipid peroxidation could be involved as one of the mechanism leading to DNA damage. A comparative study of the cytotoxic and genotoxic potential of TiO(2) nanoparticles and bulk TiO(2) particles in human lymphocytes also reveal interesting results. While TiO(2) nanoparticles were found to be genotoxic at a low dose of 0.25 mM followed by a decrease in extent of DNA damage at higher concentrations; bulk TiO(2) particles reveal a more or less dose dependent effect, genotoxic only at dose 1.25 mM and above. The study thus confirms the genotoxic potential of TiO(2) nanoparticles in both plant and human lymphocytes.  相似文献   
102.
This study aims to determine the trade-off between river pollution and the growth of the economy in the context of India using the concept of Environmental Kuznets Curve (EKC). According to EKC theory, environmental pressure tends to rise faster than income growth in the early stages of economic development and then declines in the later stages with further economic growth. The present study has used the cross-sectional time series data for river pollutants of Biochemical Oxygen Demand (BOD) and Dissolved Hydrogen Ions (PH) across various states of India for the period 1990–1991 to 2005–2006. This study shows why the conventional EKC model is not sufficient to ascertain the declining path of pollution as the economy grows in the second stage. The paper uses the modified EKC theory where the EKC curve is proposed to have 2 turning points. Our results indicated ‘tilted-S shaped’ relationship which contradicts EKC in the early stages. Most of the regions that were studied have crossed the first turning point but are still to cross the second turning point, which means that there will be an ascent in the pollution level in the future. This calls for more stringent environment policies complementing the desired growth path.  相似文献   
103.
The paper examines the concentrations of isomers of hexachlorocyclohexane (HCHs), dichlorodiphenyl trichloroethane and its metabolites (DDTs), alpha-endosulfan and endosulfan sulfate in surface sediment samples collected from the mouth of Hugli estuary in the vicinity of Sundarban mangrove environment, eastern part of India. An overall pattern of accumulation of these pesticides was in the order of: SigmaHCH>endosulfan sulfate>SigmaDDT>alpha-endosulfan. The concentration of these compounds was quite low. An elevated level of SigmaHCH, SigmaDDT and endosulfan sulfate were marked during premonsoon months, a period characterized by high salinity and pH values. Among the isomers and metabolites of HCH and DDT, beta-HCH, pp'-DDT and pp'-DDE were found to be dominant. The sources of contamination are closely related to human activities, such as domestic and industrial discharges, agricultural chemical applications and soil erosion due to deforestation. The study is compared to other estuarine environment in India and abroad. The present data will serve as a baseline against which future anthropogenic effects may be assessed.  相似文献   
104.
The acetamiprid, a nenicotinoid insecticide, is a popular crop protection agent used in fields as well as in protected cultivation. A laboratory experiment was conditions to study the effect of light, moisture, and pH on the persistence of acetamiprid in water and soil. Dissipation half-lives of acetamiprid in water at pH 4, 7, and 9 were 6.2, 7.3, and 5.1 days, respectively, and 4.3 days under UV and sunlight conditions. Half-life in soil at three concentrations, 0.1, 1.0, and 10 μg g?1 under different moisture regimes varied from 21.5–22.8, 15.6–22.4, 10.0–15.8 days, respectively, indicating that acetamiprid dissipated faster in submerged soil as compared to field capacity moisture and dry conditions. The leaching study showed that the possibility for leaching of acetamiprid to ground water is extremely low under normal condition of average rainfall due to compact nature soil in the field. Acetamiprid poses low risks to the ecosystem because of their rapid dissipation and low-bound residues in the environment.  相似文献   
105.
Supervised field trials were conducted at four different agro-climatic zones in India to evaluate the dissipation pattern and risk assessment of flubendiamide on tomato. Flubendiamide 480 SC was sprayed on tomato at 48 and 96 g active ingredient (a.i.) ha?1. Samples of tomato fruits were drawn at 0, 1, 3, 5, 7, 10, 15, and 20 days after treatment. Quantification of residues was done on a high-performance liquid chromatography (HPLC) device with a photo diode array detector. The limit of quantification (LOQ) of this method was found to be 0.01 mg kg?1 while limit of detection (LOD) being 0.003 mg kg?1. Residues of flubendiamide were found below the determination limit of 0.01 mg kg?1 in 20 days at both the dosages in all the locations. The half-life of flubendiamide at an application rate of 48 g a.i.?ha?1 varied from 0.33 to 3.28 days and at 48-g a.i. ranged from 1.21 to 3.00 days. On the basis of data generated under the All India Network Project on Pesticide Residues, a preharvest interval (PHI) of 1 day has been recommended, and the flubendiamide 480 SC has been registered for its use on tomato by the Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India. The maximum residue limit (MRL) of flubendiamide on tomato has been fixed by the Ministry of Health and Family Welfare, Government of India under Food Safety Standard Authority of India, as 0.07 μg g?1 after its risk assessment.  相似文献   
106.

Among heavy metals, lead (Pb) is a non-essential metal having a higher toxicity and without any crucial known biological functions. Being widespread, non-biodegradable and persistent in every sphere of soil, air and water, Pb is responsible for severe health and environmental issues, which need appropriate remediation measures. However, microbes inhabiting Pb-contaminated area are found to have evolved distinctive mechanisms to successfully thrive in the Pb-contaminated environment without exhibiting any negative effects on their growth and metabolism. The defensive strategies used by bacteria to ameliorate the toxic effects of lead comprise biosorption, efflux, production of metal chelators like siderophores and metallothioneins and synthesis of exopolysaccharides, extracellular sequestration and intracellular bioaccumulation. Lead remediation technologies by employing microbes may appear as potential advantageous alternatives to the conventional physical and chemical means due to specificity, suitability for applying in situ condition and feasibility to upgrade by genetic engineering. Developing strategies by designing transgenic bacterial strain having specific metal binding properties and metal chelating proteins or higher metal adsorption ability and using bacterial activity such as incorporating plant growth-promoting rhizobacteria for improved Pb resistance, exopolysaccharide and siderophores and metallothionein-mediated immobilization may prove highly effective for formulating bioremediation vis-a-vis phytoremediation strategies.

  相似文献   
107.
Studies on degradation of 14C-chlorpyrifos in the marine environment.   总被引:2,自引:0,他引:2  
Degradation of 14C-chlorpyrifos was studied in a marine ecosystem for 60 days and in marine sediment under moist and flooded conditions using a continuous flow system allowing a total 14C-mass balance for a period of 40 days. In the marine ecosystem, 14C-chlorpyrifos underwent rapid degradation and very little (1-2%) 14C-residues of the applied activity were detected after two months in sediments. Clams were major component of the ecosystem and played a significant role in degradation of the insecticide. In the continuous flow system chlorpyrifos did not undergo substantial mineralization. Volatilization accounted for 0.8-1% loss during first ten days of application. The amounts of extractable 14C-activity were higher in flooded sediments than in moist sediment. More bound residues were formed under moist conditions. TCP (3,5,6-trichloro-2-pyridinol) was the major degradation product formed under both moist and flooded conditions, its formation being higher in the latter conditions. These studies underline the role of clams in degradation of chlorpyrifos and lack of microbial degradation. In absence of clams, chlorpyrifos underwent abiotic degradation in marine sediment with formation of bound residues.  相似文献   
108.
There is a general contention among scholars that first, wheat–paddy cropping pattern is largely responsible for declining ground water table in Punjab and secondly, that the wheat–paddy cropping system is becoming unsustainable over time as the yield levels of these two major crops are stagnating. However, the existing evidences do not throw adequate insight into the stage of groundwater depletion during which the wheat–paddy cycle becomes unsustainable. The paper strengthens the existing empirical base of sustainability status of this cropping cycle in Punjab. A comparison of irrigation systems in terms of both trends in yield and stability for wheat and paddy has been attempted to arrive at a holistic appraisal of sustainability aspects of crop specialization in Punjab. It is observed that the canal dependent irrigation system has performed better as compared to the overexploited groundwater irrigation system in terms of most of the parameters used in the study.
Animesh KumarEmail:
  相似文献   
109.
Groundwaters have been collected from deltaic areas of West Bengal (Chakdaha and Baruipur blocks) to record their hydrogeochemical characteristics, and to verify the mechanism of arsenic (As) release. The data reveals that shallow (<70 m) groundwaters in both areas are of Ca-Mg-HCO(3) type; however deeper (>70 m) groundwaters in Baruipur areas are slightly enriched with Na, Cl and SO(4), indicating possible saline water intrusion. The groundwater is anoxic (mean Eh: -124 and -131 mV) with high levels of As (mean: 116 and 293 mug/L), Fe (mean: 4.74 and 3.83 mg/L), PO(4) (mean: 3.73 and 3.21 mg/L) and Mn (mean: 0.37 and 0.49 mg/L), respectively for Chakdaha and Baruipur areas. The observed values of As and bicarbonate (mean: 409 and 499 mg/L) in the shallow aquifer are indicative of redox processes (e.g., oxidation of organic matter) favouring the release of As. Moreover, the presence of DOC in the shallow aquifer suggests that organic matter is young and reactive, and may actively engage in redox driven processes. Our study further confirms that both Fe- and Mn-reduction processes are the dominant mechanisms for As release in these groundwaters.  相似文献   
110.
The presence of elevated concentration of arsenic (As) in natural hydrologic systems is regarded as the most formidable environmental crisis in the contemporary world. With its substantial presence in the drinking water of more than thirty countries worldwide, and with an affected population of more than 100 million, it has been termed as the largest mass poisoning in human history. In this special issue, we have tried to provide the most recent research advances on controls and challenges of this severe groundwater contaminant. The articles in this issue, originally presented in the 2006 Geological Society of America Annual Meeting, address the distribution of As in various geologic and geographic settings, the controls of redox and other geochemical parameters on its spatial and temporal variability, the influence of sedimentology and stratigraphy on its occurrence, and mechanisms controlling its mobility. The knowledge available from these studies should provide a roadmap for future research in arsenic contamination hydrology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号