首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10549篇
  免费   11篇
  国内免费   15篇
安全科学   43篇
废物处理   798篇
环保管理   1320篇
综合类   1118篇
基础理论   3249篇
环境理论   1篇
污染及防治   2036篇
评价与监测   1060篇
社会与环境   935篇
灾害及防治   15篇
  2023年   17篇
  2022年   22篇
  2021年   34篇
  2020年   27篇
  2019年   24篇
  2018年   1501篇
  2017年   1407篇
  2016年   1233篇
  2015年   160篇
  2014年   73篇
  2013年   77篇
  2012年   513篇
  2011年   1408篇
  2010年   733篇
  2009年   630篇
  2008年   935篇
  2007年   1275篇
  2006年   64篇
  2005年   62篇
  2004年   66篇
  2003年   79篇
  2002年   115篇
  2001年   23篇
  2000年   18篇
  1999年   4篇
  1998年   12篇
  1997年   7篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1984年   12篇
  1983年   8篇
  1966年   1篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1954年   3篇
  1951年   1篇
  1936年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
531.
Chitin has been produced from different sea waste sources including, molluscs (mussel and oyster shell), crustacean (prawn and crab) and fish scale (pang and silver scales) using deproteinization and demineralization as chemical methods. The conditions of chemical extraction process determine the quality of chitin. The obtained results revealed that, about 1 and 10% HCl and NaOH were adequate concentrations for deproteinization and demineralization process respectively. Chitin from oyster and crab shell waste had the highest yield of 69.65 and 60.00% while prawn, mussel shell, pang and silver scales had the lowest yield of 40.89, 35.03, 35.07 and 31.11% respectively. Chitin solubility is controlled by the quantity of protonated acetyl groups within the polymeric chain of the chitin backbone, thus on the percentage of acetylated and non-acetylated d-glucos-acetamide unit. Good solubility results were obtained in mussel, oyster and crab shells respectively. The chitin molecular weight characteristics and activity are controlled by the degree of acetylation (DA) and the distribution of acetyl group extending in the polymer chain. DA is determined by acid-base titration methods and molecular weight determined by Brookfield viscometry. Both methods are found to be effective.  相似文献   
532.
The utilization of the coffee husk fiber (CHF) from the coffee industry as a reinforcing filler in the preparation of a cost-effective thermoplastic based composite was explored in this study. The chemical composition and thermal properties of the CHF were investigated and compared with those of wood fiber (WF). CHF proved to be mainly composed of cellulose, hemicellulose and lignin, and exhibited similar thermal behavior to WF. High density polyethylene (HDPE) composites with CHF loadings of from 40 to 70% were prepared using melt processing and extrusion. The processing properties, mechanical behavior, water absorption and thermal performance of these composites were investigated. The effect of maleated polyethylene (MAPE) used as a coupling agent on the composite was explored. The experimental results showed that increasing the CHF loading in the HDPE matrix resulted in an increase in the modulus and thermal properties of the composites, but resulted in poor water resistance. The addition of a 4% MAPE significantly improved the interfacial behavior of the hydrophilic lignocellulosic fiber and the hydrophobic polymer matrix.  相似文献   
533.
The effects of three compounded curing agents on the properties and performance of the urea-formaldehyde (UF) resin were investigated in this study. The compounded curing agents were prepared by mixing ammonium chloride with hexamethylenetetramine, citric acid, and oxalic acid respectively at a ratio of 1:1, named N-H, N–CA, and N–OA, respectively. The curing process, crystallinity, and physical properties were measured, and the three-ply plywood was fabricated to measure its prepress strength, wet shear strength, and formaldehyde emission. Results showed that the compounded curing agents N–CA and N–OA enhanced the initial viscosity, crosslinking density and thermal stability of UF resin. Additionally, the prepress strength of the plywood bonded by UF resin with N–CA and N–OA increased by 82 and 111% respectively compared to the UF resin with NH4Cl, and the wet shear strength increased by 14 and 16%, the formaldehyde emission decreased by 19 and 42% respectively. However, owing to the short pot-life of these curing agent limited their storage time, the curing agents N–CA and N–OA should be applied to fabricate plywood in winter for obtaining a better bond strength and a lower formaldehyde emission. While the UF resin with N–HT showed a suitable pot-life, so it could be applied to fabricate plywood in summer for long time storage and avoiding procuring problem.  相似文献   
534.
Cassava starch waste hydrolysates (CSWHs) with different degrees of polymerisation, i.e., CSWHs-1, CSWHs-2 and CSWHs-3, were prepared through the hydrolysis of cassava starch waste with thermostable a-amylase from Thermococcus sp. HJ21. The prepared CSWHs were then used as a carbon source for curdlan production with Alcaligenes faecalis ATCC 31749. The amount of curdlan produced and the glucosyltransferase activity during curdlan synthesis increased more obviously when CSWHs-2 was used as the carbon source than when glucose was used. Using both carbon sources, the maximum curdlan production was observed at day 5, and the maximum glucosyltransferase activity was observed at day 4. Glucosyltransferase activity decreased thereafter, and biomass continued to increase until the end of the experiment (day 6). Results indicated that the enhanced curdlan production with CSWHs as the carbon source was highly correlated with glucosyltransferase activity.  相似文献   
535.
Natural fibers are limited in their use as reinforcement to commodity polymers. They cannot be used to reinforce engineering polymers due to their low thermal stability at high processing temperatures. This study presents an approach to successfully reinforce polyamides using a derivative of natural fibers as reinforcement without the effects of thermal degradation during melt processing. Biocarbon from miscanthus fibers was used to reinforce polyamide 6 up to 40 wt%. At 40 wt% filler content, the tensile and flexural strengths increased by 19.6 and 47% respectively in comparison to the neat polyamide. The moduli were also increased by 31.5 and 63.7% respectively. A maximum increase in impact strength of 43.7% was achieved at 20 wt% biocarbon loading. The morphology of the tensile fractured samples showed stretched polyamide ligaments attached to the biocarbon particles, indicating the presence of interaction between filler and matrix. Interestingly, more bonded interfaces were observed between the polyamide and biocarbon particles with increasing biocarbon content possibly stemming from increased biocarbon surfaces with functional groups. These composites show great potential to substitute in part or whole, some particulate filled polyamides currently used in the automotive industry.  相似文献   
536.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   
537.
Although hemicellulose is found widely in nature, it is currently under-utilized as a raw material for commercial applications. It would be desirable to find new uses for hemicellulose in order to add value to this agro-based material. A common type of hemicellulose is xylan, which is found in a number of wood species and in cotton. In this work we prepared cationic and anionic xylan derivatives and characterized them by 13C NMR, FT-IR, size exclusion chromatography (SEC), thermal analysis, and rheology. In particular, the 13C NMR spectra of carboxymethyl xylan (CMX) and quaternary ammonium-adducted xylan (QAX) were fully assigned with the help of samples with different degrees of substitution. SEC indicated that the beechwood xylan showed a bimodal molecular weight distribution, but with derivatization the distribution tended to become unimodal. Thermal analysis and rheology studies did not uncover any surprises; the solution of xylan and its derivatives exhibited mostly Newtonian behavior. The blends of CMX and QAX produced a precipitate at almost all ratios, indicating the formation of a polyelectrolyte complex. When cationic and anionic xylan samples were added together to paper, the paper dry strength increased. Thus, the combination of cationic/anionic xylan may be of interest in selected applications.  相似文献   
538.
The catalytic upgrading pyrolysis of pine sawdust was performed at 500 °C with various metal oxides to improve the quality of the bio-oil. The aim of this study was to investigate the potential of the metal oxides instead of traditional zeolites for catalytic upgrading pyrolysis with the analysis of Gas Chromatograph/Mass Spectrometer. In this study, the used catalysts were Calcium-oxide, Magnesium oxide, Titanium dioxide, and Zeolite (Si/Al?=?80). The influence of catalysts on products yields and compositions were investigated. Most metal oxides can enhance the bio-gas with the bio-oil yields decreased. The metal oxides led to a decrease of Acids, Aldehydes, Ketones and an increase of Furfural, Cresols, Catechols in Furans and Phenolics. Among the catalysts, the MgO catalysts was the most effective to convert the high molecular into lights ones (6.65% Cresols) with yield of 20.48% for Furfural. The deoxygenation reaction in bio-oil was suggested to convert oxygenated compounds into the low molecular weight of the materials (6.39% Guaiacols). Thus, the used metal oxides can improve the quality of bio-oil by decreasing undesirable compounds as well as increasing the desirable compounds with low oxygen contents via deoxygenation reaction.  相似文献   
539.
Mining of Cu took place in Kvalsund in the Arctic part of Norway in the 1970s, and mine tailings were discharged to the inner part of the fjord, Repparfjorden. Metal speciation analysis was used to assess the historical dispersion of metals as well as their potential bioavailability from the area of the mine tailing disposal. It was revealed that the dispersion of Ba, Cr, Ni, Pb and Zn from the mine tailings has been limited. Dispersion of Cu to the outer fjord has, however, occurred; the amounts released and dispersed from the mine tailing disposal area quantified to be 2.5–10 t, less than 5% of Cu in the original mine tailings. An estimated 80–390 t of Cu still remains in the disposal area from the surface to a depth of 16 cm. Metal partitioning showed that 56–95% of the Cu is bound in the potential bioavailable fractions (exchangeable, reducible and oxidisable) of the sediments, totalling approximately 70–340 t, with potential for continuous release to the pore water and re-precipitation in over- and underlying sediments. Surface sediments in the deposit area were affected by elevated Cu concentrations just above the probable effect level according to the Norwegian sediment quality criteria, with 50–80% Cu bound in the exchangeable, reducible and oxidisable fractions, potentially available for release to the water column and/or for uptake in benthic organisms.  相似文献   
540.
Using a relational approach, I examine several cultural dimensions involved in household water access and use in Newtok, Alaska. I describe the patterns that emerge around domestic water access and use, as well as the subjective lived experiences of water insecurity including risk perceptions, and the daily work and hydro-social relationships involved in accessing water from various sources. I found that Newtok residents haul water in limited amounts from a multitude of sources, both treated and untreated, throughout the year. Household water access is tied to hydro-social relationships predicated on sharing and reciprocity, particularly when the primary treated water access point is unavailable. Older boys and young men are primarily responsible for hauling water, and this role appears to be important to male Yupik identity. Many interviewees described preferring to drink untreated water, a practice that appears related to cultural constructions of natural water sources as pure and self-purifying, as well as concerns about the safety of treated water. Concerns related to the health consequences of low water access appear to differ by gender and age, with women and elders expressing greater concern than men. These preliminary results point to the importance of understanding the cultural dimensions involved in household water access and use. I argue that institutional responses to water insecurity need to incorporate such cultural dimensions into solutions aimed at increasing household access to and use of water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号