首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   1篇
安全科学   20篇
废物处理   8篇
环保管理   14篇
综合类   20篇
基础理论   33篇
污染及防治   21篇
评价与监测   7篇
社会与环境   6篇
灾害及防治   1篇
  2023年   2篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2017年   7篇
  2016年   10篇
  2015年   3篇
  2014年   3篇
  2013年   9篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   2篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   9篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1964年   1篇
  1960年   1篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
  1950年   1篇
  1921年   1篇
  1920年   1篇
排序方式: 共有130条查询结果,搜索用时 187 毫秒
91.
Rising levels of CO2 in the atmosphere have led to increased CO2 concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon-to-nutrient ratios are expected. As a result, the quality of the primary producers as food for herbivores may change. Here, we present experimental work showing the effect of feeding Rhodomonas salina grown under different pCO2 (200, 400 and 800 μatm) on the copepod Acartia tonsa. The rate of development of copepodites decreased with increasing CO2 availability to the algae. The surplus carbon in the algae was excreted by the copepods, with younger stages (copepodites) excreting most of their surplus carbon through respiration and adult copepods excreting surplus carbon mostly as DOC. We consider the possible consequences of different excretory pathways for the ecosystem. A continued increase in the CO2 availability for primary production, together with changes in the nutrient loading of coastal ecosystems, may cause changes in the trophic links between primary producers and herbivores.  相似文献   
92.
This paper aims to present the relevant results of a Life Cycle Assessment (LCA) study conducted on printed matter under a sheet-fed offset printing process by a company located in northwestern Mexico. Different scenarios were simulated in order to support decisions related to the improvement of environmental performance along the production processes. The study design was based on the European Platform on Life Cycle Assessment (EPLCA), which is in line with the ISO 14040 and 14044:2006 standards on LCA. The scope of the study was cradle-to-gate, with emphasis on the production of printed matter. The method chosen for the impact assessment was Impact 2002+ with a combined midpoint–damage approach. The results of the study showed that the major contributors to adverse effects were, primarily electricity consumption followed by paper consumption during the printing operation, as well as consumption of ink to a small degree. As for the plate-making operation along with the generation of secondary products, the result was negative. This is essentially due to involvement of recyclable materials, thus contributing to the prevention of raw material extraction. The smallest impact was observed from processes involving cleaning products and LP gas. The main issues of concern stemming from the results are electricity consumption and printing – both activities dominate almost all the midpoint categories. Generation of secondary products also had a relative environmental impact along the supply chain. Cleaning agents and LP gas did not have a significant impact on the final results of the process.  相似文献   
93.
94.
95.
96.
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log K ow 2.59), triethyl-chloro-phosphate (TCEP) (log K ow 1.44), tributyl phosphate (TBP) (log K ow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log K ow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log K ow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6–1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10–20 and 1.7–4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015–0.110). Despite that DEET and NBBS have log K ow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.  相似文献   
97.

Purpose  

The two artificial sweeteners cyclamate (CYC) and acesulfame (ACE) have been detected in wastewater and drinking water treatment plants. As in both facilities ozonation might be applied, it is important to find out if undesired oxidation products (OPs) are formed.  相似文献   
98.
Previously, high concentrations of cadmium have been found in the hepatopancreas of the edible or brown crab (Cancer pagurus) sampled from positions north of about 67° N, compared to regions further south along the Norwegian coast, with no clear understanding why. In order to study a similar organism in the same ecosystem, the present study analyzed 210 shore crabs (Carcinus maenas) from four different locations along the Norwegian coast, two in the North and two in the South. The physiological variables size, sex, molting stage, hepatosomatic index, carapace color, and gonad maturation were registered, in attempt to explain the high inter-individual variation in cadmium levels in hepatopancreas. In contrast to the brown crabs, the shore crabs showed no clear geographical differences in cadmium concentrations. This indicates physiological differences between the two crab species. No clear and consistent correlations were found between cadmium levels and physiological parameters, except for sex, where cadmium concentration in hepatopancreas was twice as high in males compared to females. The cadmium levels also varied with season, with approximately 40 and 60% lower cadmium concentration in April than August for male and female shore crabs, respectively. None of the analyzed cadmium concentrations in muscle meat from claws exceeded EUs food safety limit, and low cadmium levels in soup prepared from shore crabs clearly indicated that this dish is not problematic regarding food safety.  相似文献   
99.
Strand LT  Haaland S  Kaste O  Stuanes AO 《Ambio》2008,37(1):18-28
To provide baseline data for climate manipulation experiments in 11 small (30-268 m2) headwater catchments at Storgama, Telemark County, Southern Norway, we assessed the natural variability in site characteristics and runoff quality. Annual average concentrations in runoff at the sites have coefficients of variation between 26-61%, with the smallest values for total organic carbon (TOC) and carbon to nitrogen (C/N) ratios and the largest for inorganic nitrogen (N). The catchments have between two and five times higher concentrations of inorganic N, TOC, and total phosphorus than the larger (0.6 km2) Storgama watershed nearby. Concentrations of TOC and TON in runoff tend to increase with soil C and N content and with the volume of soil in the catchment. For nitrate (NO3) and ammonium in runoff, the reverse is true. In wet years the proportion of bare rock is a major predictor for the annual average NO3 concentration in runoff.  相似文献   
100.
Large-scale dredging of contaminated sediments is taking place in the harbor of Oslo, Norway. The dredged sediment masses are transferred into a confined aquatic disposal facility (CAD) in a natural 70-m deep basin within the Oslofjord. Currently there is no established method to determine how much dissolved contaminants are released during relocation and deposition of these sediments. For this reason we tested the use of equilibrium passive samplers consisting of 55 microm thin polyoxymethylene (POM-55) for studying the release of freely dissolved and thus bioavailable PAHs and PCBs at the disposal site, and found this to be a suitable method. In order to use POM-55 for monitoring PCBs, it was necessary to measure their POM-55/water partition coefficients, which was also presented as part of this study. Elevated turbidity (average 4.1 mg l(-1)) was observed at one side of the basin where no natural sill exists. Analysis of POM-55 at this location before and after deposition revealed that there was an increase in freely dissolved concentrations (C(W,free)) during deposition by a factor 37.5 for PAHs and a factor of 2.9 for PCBs. In addition, during deposition phenanthrene-to-anthracene aqueous concentration ratios at this location (values of 3-4) were more similar to those of the deposited sediments (approximately 2) than to those of the CAD water prior to deposition (approximately 14). This was not observed for the other locations where a natural sill exists at approximately 30 m water depth. The POM-55 equilibrium passive samplers are here shown to be useful tools for measuring and understanding the dynamics involved in the release of dissolved contaminants during sediment relocation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号