首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   19篇
  国内免费   1篇
安全科学   15篇
废物处理   2篇
环保管理   68篇
综合类   58篇
基础理论   46篇
污染及防治   50篇
评价与监测   5篇
社会与环境   4篇
灾害及防治   6篇
  2023年   2篇
  2021年   3篇
  2019年   2篇
  2018年   5篇
  2017年   9篇
  2016年   6篇
  2015年   7篇
  2014年   4篇
  2013年   16篇
  2012年   9篇
  2011年   9篇
  2010年   10篇
  2009年   11篇
  2008年   10篇
  2007年   10篇
  2006年   10篇
  2005年   5篇
  2004年   13篇
  2003年   8篇
  2002年   5篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1996年   6篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1972年   2篇
  1963年   2篇
  1961年   2篇
  1960年   2篇
  1946年   2篇
  1937年   1篇
  1936年   1篇
  1932年   1篇
  1926年   1篇
  1922年   1篇
  1919年   2篇
  1913年   4篇
排序方式: 共有254条查询结果,搜索用时 15 毫秒
11.
引言 莫日-瓜苏河位于纳斯吉拉斯州,海拔高1450m.流淌470km后,该河流注入圣保罗州的帕尔杜河.其流域总面积为1400km2,其中有86%位于圣保罗州,包括一个工业化地区[1].  相似文献   
12.
13.
14.
15.
Tuberous sclerosis (TSC) is a frequent autosomal-dominant condition (affecting 1 in 6000 individuals) caused by various mutations in either the hamartin (TSC1) or the tuberin gene (TSC2). This allelic and non-allelic heterogeneity makes genetic counseling and prenatal diagnosis difficult, especially as a significant proportion of TSC cases are due to de novo mutations. For this reason the identification of the disease causing mutation is mandatory for accurate counseling, yet current mutation detection methods such as single-strand conformation polymorphism (SSCP) or denaturing gradient gel electrophoresis (DGGE) are labor intensive with limited detection efficiency. Denaturing high-performance liquid chromatography (DHPLC) is a high-throughput, semi-automated mutation detection system with a reported mutation detection rate close to 100% for PCR fragments of up to 800 bp. We used a recently described DHPLC assay allowing the efficient detection of mutations in TSC1 to analyze the DNA extracted from a chorion villus sample in order to perform a prenatal diagnosis for TSC. The fetus was found not to have inherited the deleterious mutation and the DHPLC diagnosis was confirmed by haplotype analysis. This represents the first DHPLC-based prenatal diagnosis of a genetic disease. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
16.
A series of mesocosms was exposed to a suite of light treatments and nutrient enrichment in order to generate algal communities of varying biomass. the influence of this biomass on the speciation of copper (II) was studied. Distribution coefficients (Kd,Lkg-1) were relatively high (logKd = 5 to 7), indicative of robust trace metal sequestration, and were likely controlled by the particulate organic carbon content (foc). Differences in Kd over time and among treatments were significant, as was the relationship between Kd and foc. Fluorescence quenching was used to determine binding capacities (Lt, M) and their associated binding constants (Kcond,M-1) in order to model the solid phase copper speciation. the Kcond ranged between 2.1 and 5.2 × 1012M-1, indicating a very strong copper-ligand complex, and was higher in mesocosms that received more light. the light Lt increased over time, dramatically after the nutrient enrichment, but did not vary systematically among light treatments. Lt ranged from 7.2 × 10- 7 to 4.9 × 10- 5 M. the large magnitudes of Kd, Kcond and Lt ensured that greater than 97% of total copper in the mesocosms was complexed by organic matter. the total copper concentration ([Cu]T, M) needed to reach a target dissolved copper concentration of 10-12.5 M (pCu = 12.5) was determined for each mesocosm over time. [Cu]T was between 8.02 × 10-5 and 3.41 × 10-2 M, and increased over time. the [Cu]T normalized to the target pCu (Effective Dose Ratio, EDR) increased directly with increases in algal biomass, indicating a direct link between system productivity and copper exposure. Approximately 45% of the variance in EDR was explained by variance in total biomass, while the residual variance in EDR was due likely to differences in the strengths of particle associations and magnitude of binding capacities.  相似文献   
17.
In this paper we describe and test a sub-model that integrates the cycling of carbon (C), nitrogen (N) and phosphorus (P) in the Soil Water Assessment Tool (SWAT) watershed model. The core of the sub-model is a multi-layer, one-pool soil organic carbon (SC) algorithm, in which the decomposition rate of SC and input rate to SC (through decomposition and humification of residues) depend on the current size of SC. The organic N and P fluxes are coupled to that of C and depend on the available mineral N and P, and the C:N and N:P ratios of the decomposing pools. Tillage explicitly affects the soil organic matter turnover rate through tool-specific coefficients. Unlike most models, the turnover of soil organic matter does not follow first order kinetics. Each soil layer has a specific maximum capacity to accumulate C or C saturation (Sx) that depends on texture and controls the turnover rate. It is shown in an analytical solution that Sx is a parameter with major influence in the model C dynamics. Testing with a 65-yr data set from the dryland wheat growing region in Oregon shows that the model adequately simulates the SC dynamics in the topsoil (top 0.3 m) for three different treatments. Three key model parameters, the optimal decomposition and humification rates and a factor controlling the effect of soil moisture and temperature on the decomposition rate, showed low uncertainty as determined by generalized likelihood uncertainty estimation. Nonetheless, the parameter set that provided accurate simulations in the topsoil tended to overestimate SC in the subsoil, suggesting that a mechanism that expresses at depth might not be represented in the current sub-model structure. The explicit integration of C, N, and P fluxes allows for a more cohesive simulation of nutrient cycling in the SWAT model. The sub-model has to be tested in forestland and rangeland in addition to agricultural land, and in diverse soils with extreme properties such high or low pH, an organic horizon, or volcanic soils.  相似文献   
18.
Environmental photodegradation of mefenamic acid   总被引:1,自引:0,他引:1  
Werner JJ  McNeill K  Arnold WA 《Chemosphere》2005,58(10):1339-1346
Pharmaceuticals and personal care products are an emerging class of environmental pollutants. Photolysis is expected to be a major loss process for many of these compounds in surface waters, including the common non-steroidal anti-inflammatory drug mefenamic acid. The direct photolysis solar quantum yield of mefenamic acid was observed to be 1.5+/-0.3x10(-4). Significant photosensitization was observed in solutions of Suwanee River fulvic acid and Mississippi River water, as well as for the model photosensitization compounds 3'-methoxyacetophenone, 2-acetonaphthone and perinaphthenone. Quenching, sparging and light-filtering experiments suggested a direct reaction of mefenamic acid with excited triplet-state dissolved organic matter as the major photosensitization process. The persistence of the model photosensitizer suggests that the photosensitization by perinaphthenone occurs either by triplet-energy transfer or an electron transfer followed by rapid regeneration of the sensitizer. Due to its low quantum yield, the loss of mefenamic acid in sunlit natural waters is expected to depend on both direct and indirect photodegradation processes.  相似文献   
19.
Background The use of natural gas has increased in the last years. In the future, its import supply and transport structure will diversify (longer distances, higher share of LNG (liquefied natural gas), new pipelines). Thus the process chain and GHG emissions of the production, processing, transport and distribution might change. Simultaneously, the injection of bio methane into the natural gas grid is becoming more important. Although its combustion is regarded as climate neutral, during the production processes of bio methane GHG emissions are caused. The GHG emissions occurring during the process chain of energy fuels are relevant for the discussion on climate policy and decision making processes. They are becoming even more important, considering the new Fuel Quality Directive of the EU (Dec. 2008), which aims at controlling emissions of the fuel process chains. Aim In the context of the aspects outlined above the aim is to determine the future development of gas supply for Germany and the resulting changes in GHG emissions of the whole process chain of natural gas and bio methane. With the help of two gas consumption scenarios and an LCA of bio methane, the amount of future emissions and emission paths until 2030 can be assessed and used to guide decision processes in energy policy. Results and discussion The process chain of bio methane and its future technical development are outlined and the related emissions calculated. The analysis is based on an accompanying research study on the injection of bio methane to the German gas grid. Two types of biogas plants have been considered whereof the “optimised technology” is assumed to dominate the future market. This is the one which widely exploits the potential of process optimisation of the current “state of the art” plant. The specific GHG emissions of the process chain can thus be nearly halved from currently 27.8?t CO2-eq./TJ to 14.8?t CO2-eq./TJ in 2030. GHG emissions of the natural gas process chain have been analysed in detail in a previous article. Significant modifications and a decrease of specific emissions is possible, depending on the level of investment in the modernisation of the gas infrastructure and the process improvements. These mitigation options might neutralise the emission increase resulting from longer distances and energy intensive processes. In the last section two scenarios (low and high consumption) illustrate the possible development of the German gas supply until 2030, given an overall share of 8–12?% of bio methane. Considering the dynamic emission factors calculated in the former sections, the overall gas emissions and average specific emissions of German gas supply can be given. The current emissions of 215.4 million t CO2-eq. are reduced by 25?% in the low-consumption scenario (162 million t CO2-eq.), where consumption is reduced by 17?%. Assuming a consumption which is increased by 17?% in 2030, emissions are around 7?% higher (230.9 million t CO2-eq.) than today. Conclusions Gaseous fuels will still play a significant role for the German energy supply in the next two decades. The GHG emissions mainly depend on the amount of gas used. Thus, energy efficiency will be a key issue in the climate and energy related policy discussion. A higher share of bio methane and high investments in mitigation and best available technologies can significantly reduce the emissions of the process chain. The combustion of bio methane is climate neutral compared to 56?t CO2/TJ caused by the direct combustion of natural gas (or 111?t CO2/TJ emitted by lignite). The advantage of gaseous energy carriers with the lowest levels of GHG emissions compared to other fossil fuels still remains. This holds true for fossil natural gas alone as well as for the expected future blend with bio-methane.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号