首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
安全科学   1篇
环保管理   5篇
综合类   6篇
基础理论   6篇
污染及防治   3篇
评价与监测   1篇
社会与环境   1篇
  2022年   1篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2011年   1篇
  2010年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   2篇
  1998年   1篇
  1983年   1篇
  1980年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
21.
Reducing emissions from deforestation and forest degradation (REDD) can be an effective and efficient means of mitigating climate change. However, the perceived equity in the distribution of financial incentives for REDD could also emerge as a critical issue in international negotiations. The design of reference levels, which provide the benchmark for crediting emissions reductions, affects the economic incentives for national participation in a REDD mechanism and thus the overall willingness to reach an agreement on REDD. This paper compares the equity impacts of five proposed reference level designs using a partial-equilibrium model. Tradeoffs among equity, environmental effectiveness and cost-efficiency indicate the proposals trigger similar aggregate emissions reductions but lead to different outcomes in efficiency and alternative measures of equity. If equity across countries is measured as the financial incentive provided relative to a country's forest carbon stock, then a REDD mechanism compensating a uniform share of at-risk carbon stocks is the most equitable. On the other hand, if equity is evaluated as the financial incentive relative to the opportunity costs of participating in REDD, then the most equitable approach would be compensating emissions reductions but withholding a part of the payments to compensate for carbon stocks, which also encourages broader country participation under our model.  相似文献   
22.
An increase in the rate of sea-level rise and potential changes in storminess represent important components of global climate change that will likely affect the extensive coasts of the Northeastern USA. Raising sea level not only increases the likelihood of coastal flooding, but changes the template for waves and tides to sculpt the coast, which can lead to land loss orders of magnitude greater than that from direct inundation alone. There is little question that sea-level rise, and in particular an increased rate of rise, will result in permanent losses of coastal land. However, quantitative predictions of these future coastal change remains difficult due in part to the complexity of coastal systems and the influence of infrequent storm events, and is further confounded by coastal science’s insufficient understanding of the behavior of coastal systems over decadal timescales. Recently, dramatic improvements in technology have greatly improved our capabilities to investigate and characterize processes and sedimentary deposits in the coastal zone, allowing us, for the first time, to address some of the over-arching problems involved in shoreline change. Despite advances in many areas of coastal geology, our fundamental understanding of shoreline change has been limited by a lack of a broad and integrated scientific focus, a lack of resources, and a lack of willingness on the part of policymakers who make crucial decisions about human activity along the coast to support basic research in this area. Although quantitative predictions remain constrained, there remains little doubt that the predicted climates changes will have profound effects upon the Northeastern coast.  相似文献   
23.
The relationships between habitat amount and fragmentation level and functional connectivity and inbreeding remain unclear. Thus, we used genetic algorithms to optimize the transformation of habitat area and fragmentation variables into resistance surfaces to predict genetic structure and examined habitat area and fragmentation effects on inbreeding through a moving window and spatial autoregressive modeling approach. We applied these approaches to a wild giant panda population. The amount of habitat and its level of fragmentation had nonlinear effects on functional connectivity (gene flow) and inbreeding. Functional connectivity was highest when approximately 80% of the surrounding landscape was habitat. Although the relationship between habitat amount and inbreeding was also nonlinear, inbreeding increased as habitat increased until about 20% of the local landscape contained habitat, after which inbreeding decreased as habitat increased. Because habitat fragmentation also had nonlinear relationships with functional connectivity and inbreeding, we suggest these important responses cannot be effectively managed by minimizing or maximizing habitat or fragmentation. Our work offers insights for prioritization of protected areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号