首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   0篇
  国内免费   6篇
安全科学   3篇
废物处理   28篇
环保管理   3篇
综合类   20篇
基础理论   22篇
污染及防治   27篇
评价与监测   6篇
社会与环境   3篇
  2023年   2篇
  2022年   2篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   9篇
  2005年   7篇
  2004年   8篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1993年   1篇
  1982年   1篇
排序方式: 共有112条查询结果,搜索用时 426 毫秒
91.
We present 40 year-long skeletal chronologies of tin (Sn) and copper (Cu) from an annually-banded coral (Porites sp.) collected from Pohnpei Island, Micronesia (western equatorial Pacific). Both the elements are present in antifouling marine paints and are released inadvertently into ambient seawater. Especially, Sn has often been used in the form of tributyltin (TBT). Based on a stepwise pretreatment examination, Sn and Cu both inside and outside the aragonite lattice of the coral skeleton show a potential for providing marine pollution indicators. High values of extra-skeletal Cu/Ca and Sn/Ca atomic ratios were found between late 1960s and late 1980s during a period of active use of TBT-based antifouling paints worldwide. However, a significant decrease in both the ratios in the beginning of 1990s can be attributed to regulation of the use of TBT on cargo ships by countries such as the USA, Japan and Australia.  相似文献   
92.
Abstract

The lakes of Hanoi are important water resources for urban agriculture. The concentrations of 17α-ethinylestradiol in the water of three major lakes were found to range from 0.1 to 9.1?ng/L, peaking during the rainy season. Effects at levels from 1?ng/L to 1?µg/L on the germination of mung bean (Vigna radiata) and bok choy (Brassica rapa) were studied. Soaking the seeds in solutions containing 17α-ethinylestradiol at 10?ng/L and higher increased the germination rate of mung bean but not of bok choy. For the latter, irrigation after sowing with solutions containing 17α-ethinylestradiol at 10?ng/L and higher accelerated germination.

Abbreviations: MNRE: Ministry of Natural Resources and Environment; PE60: Population equivalent; USGS: U.S. Geological Survey; SPE: Solid phase extraction; EDTA: Disodium ethylenediaminetetraacetate; HPLC: High performance liquid chromatography; ELISA: Enzyme-linked immunosorbent assay; DOM: Dissolved organic matter; EEQ: Estradiol equivalent  相似文献   
93.
94.
95.
Qualitative evaluation of the effects of uncertainties originating from scenario development, modeling approaches, and parameter values is an important subject in the area of safety assessment for high-level nuclear waste disposal sites. In this study, regional-scale groundwater flow analyses for the Tono area, Japan were conducted using three continuous models designed to handle heterogeneous porous media. We evaluated the simulation results to quantitatively analyze uncertainties originating from modeling approaches. We found that porous media heterogeneity is the main factor which causes uncertainties. We also found that uncertainties originating from modeling approaches greatly depend on the types of hydrological structures and heterogeneity of hydraulic conductivity values in the domain assigned by modelers. Uncertainties originating from modeling approaches decrease as the amount of labor and time spent increase, and iterations between investigation and analyses increases.  相似文献   
96.
An investigation of water-soluble organic carbon (WSOC) in atmospheric particles was conducted as an index of the formation of secondary organic aerosol (SOA) from April 2005 to March 2006 at Maebashi and Akagi located in the inland Kanto plain in Japan. Fine (<2.1 μm) and coarse (2.1–11 μm) particles were collected by using an Andersen low-volume air sampler, and WSOC, organic carbon (OC), elemental carbon (EC), and ionic components were measured. The mean mass concentrations of the fine particles were 22.2 and 10.5 μg m?3 at Maebashi and Akagi, respectively. The WSOC in fine particles accounted for a large proportion (83%) of total WSOC. The concentration of fine WSOC ranged from 1.2 to 3.5 μg-C m?3 at Maebashi, rising from summer to fall. At Akagi, it rose from spring to summer, associated with the southerly wind from urban areas. The WSOC/OC ratio increased in summer at both sites, but the ratio at Akagi was higher, which we attributed to differences in primary emissions and secondary formation between the sites. The fine WSOC concentration was significantly positively correlated with concentrations of SO42?, EC, and K+, and we inferred that WSOC was produced by photochemical reaction and caused by the combustion of both fuel and biomass. We estimated that SOA accounted for 11–30% of the fine particle mass concentration in this study, suggesting that SOA is a significant year-round component in fine particles.  相似文献   
97.
A filamentous soil bacterium, strain K202, was isolated from soil where an edible mushroom (Boletopsis leucomelas) was growing and identified as belonging to the genus Streptomyces on the basis of its morphological characteristics and the presence of LL-2, 6-diaminopimelic acid. We studied the existence states of Cs and its migration from extracellular to intracellular fluid in the mycelia of Streptomyces sp. K202. The results indicated that Cs accumulated in the cells through at least 2 steps: in the first step, Cs+ was immediately and non-specifically adsorbed on the negatively charged cell surface, and in the second step, this adsorbed Cs+ was taken up into the cytoplasm, and a part of the Cs entering the cytoplasm was taken up by an energy-dependent transport system(s). Further, we confirmed that a part of the Cs+ was taken up into the mycelia competitively with K+, because K+ uptake into the intact mycelia of the strain was significantly inhibited by the presence of Cs+ in the culture media. This suggested that part of the Cs is transported by the potassium transport system. Moreover, 133Cs-NMR spectra and SEM-EDX spectra of the mycelia that accumulated Cs showed the presence of at least 2 intracellular Cs states: Cs+ trapped by intercellular materials such as polyphosphate and Cs+ present in a cytoplasmic pool.  相似文献   
98.
River water quality was evaluated with respect to eutrophication and land use during spring snowmelt and summer base flow periods in Abashiri (mixed cropland-livestock farming) and Okoppe (grassland-based dairy cattle farming), eastern Hokkaido, Japan. Water from rivers and tributaries was sampled during snowmelt and summer base flow periods in 2005, and river flow was measured. Total N (TN), NO3–N, and Si concentrations were determined using standard methods. Total catchment and upland areas for each sampling site were determined with ArcGIS hydrology modeling software and 1:25,000-scale digital topographic maps. Specific discharge was significantly higher during snowmelt than during base flow. In both areas, TN concentrations increased, whereas Si concentrations decreased, with increased specific discharge, and were significantly higher during snowmelt. The Si:TN mole ratio decreased to below or close to the threshold value for eutrophication (2.7) in one-third of sites during snowmelt. River NO3–N concentrations during base flow were significantly and positively correlated with the proportion of upland fields in the catchment in both the Abashiri (r = 0.88, P < 0.001) and Okoppe (r = 0.43, P < 0.01) areas. However, the regression slope, defined as the impact factor (IF) of water quality, was much higher in Abashiri (0.025) than in Okoppe (0.0094). The correlations were also significantly positive during snowmelt in both areas, but IF was four to eight times higher during snowmelt than during base flow. Higher discharge of N from upland fields and grasslands during snowmelt and the resulting eutrophication in estuaries suggest that nutrient discharge during snowmelt should be taken into account when assessing and monitoring the annual loss of nutrients from agricultural fields.  相似文献   
99.
This paper describes a hydrometallurgical process for recovering neodymium (Nd) and dysprosium (Dy) from a magnetic waste sludge generated from the Nd–Fe–B(–Dy) manufacturing process. Phase analysis by XRD study revealed Nd(OH)3 and Fe2O3 as main mineral phases, and chemical analysis by ICP showed the contents of 35.1 wt% Nd, 29.5 wt% Fe, 1.1 wt% Dy and 0.5 wt% B. A solution of 1 M HNO3 + 0.3 M H2O2 was used to dissolve up to 98 % Nd and 81 % Dy, while keeping Fe dissolution below 15 % within 10 min. Fe dissolved in solution was completely removed as Fe(OH)3 at pH 3 followed by precipitation of Nd and Dy with oxalic acid (H2C2O4) and recovered 91.5 % of Nd and 81.8 % of Dy from solution. The precipitate containing Nd and Dy was calcined at 800 °C to obtain Nd2O3 as final product with 68 % purity, and final recovery of 69.7 % Nd and 51 % of Dy was reported in this process.  相似文献   
100.
Environmental Chemistry Letters - Climate change induced partly by emissions of carbon dioxide (CO2) is an urgent issue worldwide, calling for advanced methods of carbon sequestration. Since...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号