首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   1篇
安全科学   6篇
废物处理   14篇
环保管理   8篇
综合类   12篇
基础理论   11篇
污染及防治   33篇
评价与监测   22篇
社会与环境   2篇
灾害及防治   3篇
  2023年   1篇
  2022年   10篇
  2021年   11篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1967年   1篇
  1964年   1篇
  1961年   2篇
  1959年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
61.
Case-study research was carried out with a view to find the attributes of occupational injury among workers in the chemical industry and to enhance safety issues. Injury data were collected and processed in terms of different variables, such as age, gender, skills, type of hazard, etc. Pareto analysis was then applied to find a pattern of occupational injury among the workers. The study revealed that 79.52% of the injured workers were in the 40-59 age group; 57.14% of accidents occurred during the 1st shift; 73.26% of accidents caused injury to hands, feet, chest to thigh, arms and eyes; and 70.93% of injuries were caused by pumps, carrying and lifting, vehicles, pipelines, valves, and grinding. Surprisingly, no one was injured in the group of temporary workers. The paper also provides specific suggestions followed by some action plans.  相似文献   
62.
Journal of Polymers and the Environment - This paper presents the effects of silane coupling agent, which includes interfacial adhesive strength, water treatment, polymer composites and coatings...  相似文献   
63.
Global warming, high-energy demand and availability of new technologies are among the factors catalyzing the search for alternative sources of energy. Currently, there is renewed interest in obtaining energy from wastes hitherto meant for disposal. Increased costs of disposal and their attendant problems of heavy environmental loading are some aspects making the disposal option unattractive. These wastes are sources of energy and among the several sources of generating this energy are the waste-to-energy (WTE) categories with potentials for useable fuel production. The WTE materials are mainly used domestic waste oils (UDWOs), municipal solid waste (MSW), agricultural and industrial wastes. However, the latter wastes are not attractive as they consist of innumerable hazardous contaminants. The UDWOs are arguably a safe and cost effective source of useable fuel. Their conversion offers the merits of a reduction in greenhouse gas emission (GHG), enhancing fuel diversification and a qualitatively comparable energy output to fossil diesel fuels. Thus, UDWOs could significantly contribute towards achieving the 2020 and 2030 goals of substituting approximately 20% and 30% of petro-diesel with biofuels in US and EU, respectively. Moreover, attaining the forecasted annual production rate of 227 billion liters of biofuel by most active stakeholders in the biodiesel industry could be easily achieved.This review aims to analyze the performance of biodiesel fuels obtained from UDWO and to demonstrate the suitability of applying these fuels as substitutes to mineral diesel in various industries. Benefits of UDWO as a biodiesel feedstock were as well highlighted.  相似文献   
64.
Environmental Science and Pollution Research - The amount of municipal solid waste (MSW) has been increasing rapidly in the urban centres of developing countries during the last few decades;...  相似文献   
65.
Environmental Science and Pollution Research - The original publication of this paper contains a mistake.  相似文献   
66.
Journal of Material Cycles and Waste Management - The pandemic of COVID-19 has disrupted every human life by putting the global activities at halt. In such a situation, people while staying at home...  相似文献   
67.
The presence of ammoniacal nitrogen (N-NH3) in leachate is one of the problems normally faced by landfill operators. Slow leaching of wastes producing nitrogen and no significant mechanism for transformation of N-NH3 in the landfills causes a high concentration of ammoniacal nitrogen in leachate over a long period of time. A literature review showed that the removal of ammoniacal nitrogen from leachate was not well documented and to date, there were limited studies in Malaysia on this aspect, especially in adsorption treatment. The main objective of the present study was to investigate the suitability of activated carbon, limestone and a mixture of both materials as a filtering medium, in combination with other treatments capable of attenuating ammoniacal nitrogen which is present in significant quantity (between 429 and 1909 mg L(-1)) in one of the landfill sites in Malaysia. The results of the study show that about 40% of ammoniacal nitrogen with concentration of more than 1000 mg L(-1) could be removed either by activated carbon or a mixture of carbon with limestone at mixture ratio of 5:35. This result shows that limestone is potentially useful as a cost-effective medium to replace activated carbon for ammoniacal nitrogen removal at a considerably lower cost.  相似文献   
68.
Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.  相似文献   
69.
Environmental Science and Pollution Research - The Sahelian zone of Senegal experienced heat waves in the previous decades, such as 2013, 2016 and 2018 that were characterised by temperatures...  相似文献   
70.
Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH3) is a central intermediate in plant N metabolism. NH3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH3 to glutamate to form glutamine (Gln), and the second step transfers the NH3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号