首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   1篇
安全科学   6篇
废物处理   14篇
环保管理   8篇
综合类   12篇
基础理论   11篇
污染及防治   33篇
评价与监测   22篇
社会与环境   2篇
灾害及防治   3篇
  2023年   1篇
  2022年   10篇
  2021年   11篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1967年   1篇
  1964年   1篇
  1961年   2篇
  1959年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
71.
Longitudinal comparison of anthropometric data from cross-sectional surveys is commonly used to assess nutritional status in relief operations. In a refugee camp in Sudan, assessment indicated a high level of childhood malnutrition, but nutritional status appeared relatively unchanged between cluster sample surveys in January (26.3% below 80% of median weight-for-height) and March 1985 (28.4% below 80% of median weight-for-height). However, in this interval, which was marked by irregular food supplies and relatively low energy (calorie) intake as well as by a high incidence of diarrhoeal disease and measles, nearly 13% of all children in the camp died. This deceptive appearance of stability in nutritional status in the face of high mortality may be explained by ongoing nutritional deterioration ("replacement malnutrition") among surviving children. These findings demonstrate that collection and analysis of mortality data are essential for the correct interpretation of anthropometric results during periods of uncertain food supply.  相似文献   
72.
Chinese brake fern (Pteris vittata L.), an arsenic (As) hyperaccumulator, has shown the potential to remediate As-contaminated soils. This study investigated the effects of soil amendments on the leachability of As from soils and As uptake by Chinese brake fern. The ferns were grown for 12 weeks in a chromated-copper-arsenate (CCA) contaminated soil or in As spiked contaminated (ASC) soil. Soils were treated with phosphate rock, municipal solid waste, or biosolid compost. Phosphate amendments significantly enhanced plant As uptake from the two tested soils with frond As concentrations increasing up to 265% relative to the control. After 12 weeks, plants grown in phosphate-amended soil removed >8% of soil As. Replacement of As by P from the soil binding sites was responsible for the enhanced mobility of As and subsequent increased plant uptake. Compost additions facilitated As uptake from the CCA soil, but decreased As uptake from the ASC soil. Elevated As uptake in the compost-treated CCA soil was related to the increase of soil water-soluble As and As(V) transformation into As(III). Reduced As uptake in the ASC soil may be attributed to As adsorption to the compost. Chinese brake fern took up As mainly from the iron-bound fraction in the CCA soil and from the water-soluble/exchangeable As in the ASC soil. Without ferns for As adsorption, compost and phosphate amendments increased As leaching from the CCA soil, but had decreased leaching with ferns when compared to the control. For the ASC soil, treatments reduced As leaching regardless of fern presence. This study suggest that growing Chinese brake fern in conjunction with phosphate amendments increases the effectiveness of remediating As-contaminated soils, by increasing As uptake and decreasing As leaching.  相似文献   
73.
Antlion larvae are sand-dwelling insect predators, which ambush small arthropod prey while buried in the sand. In some species, the larvae construct conical pits and are considered as sit-and-wait predators which seldom relocate while in other species, they ambush prey without a pit but change their ambush site much more frequently (i.e., sit-and-pursue predators). The ability of antlion larvae to evade some of their predators which hunt them on the sand surface is strongly constrained by the degree of sand stabilization or by sand depth. We studied the effect of predator presence, predator type (active predatory beetle vs. sit-and-pursue wolf spider), and sand depth (shallow vs. deep sand) on the behavioral response of the pit building Myrmeleon hyalinus larvae and the sit-and-pursue Lopezus fedtschenkoi larvae. Predator presence had a negative effect on both antlion species activity. The sit-and-wait M. hyalinus larvae showed reduced pit-building activity, whereas the sit-and-pursue L. fedtschenkoi larvae decreased relocation activity. The proportion of relocating M. hyalinus was negatively affected by sand depth, whereas L. fedtschenkoi was negatively affected also by the predator type. Specifically, the proportion of individual L. fedtschenkoi that relocated in deeper sand was lower when facing the active predator rather than the sit-and-pursue predator. The proportion of M. hyalinus which constructed pits decreased in the presence of a predator, but this pattern was stronger when exposed to the active predator. We suggest that these differences between the two antlion species are strongly linked to their distinct foraging modes and to the foraging mode of their predators. Reut Loria and Inon Scharf contributed equally to the paper.  相似文献   
74.

Purpose  

Plants can absorb a diversity of natural and man-made toxic compounds for which they have developed diverse detoxification mechanisms. Plants are able to metabolize and detoxify a wide array of xenobiotics by oxidation, sugar conjugation, glutathione conjugation, and more complex reactions. In this study, detoxification mechanisms of dimethomorph, a fungicide currently found in aquatic media were investigated in Elodea canadensis.  相似文献   
75.
This paper describes the U.S. Army Corps of Engineers screening-level water quality model (RECOVERY version 3.0) for assessing long-term impacts of contaminated bottom sediments on surface waters. The model couples contaminant interaction between the water column and the bottom sediment, as well as between contaminated and clean bottom sediments. The analysis is intended primarily for organic contaminants with the assumption that the overlying water column is well mixed vertically. The contaminant is assumed to follow linear, reversible, equilibrium sorption and first-order decay kinetics. The system is physically represented as a well-mixed water column (i.e., zero-dimensional) underlain by a vertically-stratified sediment column (i.e., one-dimensional). The sediment is well-mixed horizontally but segmented vertically into a well-mixed surface (active) layer and deep sediment. The deep sediment is segmented into variably contaminated and clean sediment regions. Processes incorporated in the model are sorption, decay, volatilization, burial, resuspension, settling, bioturbation, and pore-water diffusion. The solution couples contaminant mass balance in the water column and in the mixed sediment layer along with diffusion in the deep sediment layers. The model was verified against laboratory and field data, as well as against an analytical solution for the water and mixed sediment layers. These comparisons indicate that the model can be used as an assessment tool for evaluating remediation alternatives for contaminated bottom sediments.  相似文献   
76.
The analyses presented in this paper include the concentration levels of NO2 and O3 measured during 2 successive years in twin cities (Rawalpindi and Islamabad) of Pakistan from November 2009 to March 2011. NO2 was determined using the passive sampling method, while ozone was determined by Model 400E ozone analyzer. The average NO2 and O3 concentration in twin cities of Pakistan was found to be 44?±?6 and 18.2?±?1.24 ppb, respectively. Results indicate that the concentration of NO2 and O3 show seasonal variations. Results also depict that NO2 and O3 concentration levels are high in areas of intense traffic flow and congestion. Rawalpindi has more elevated levels of NO2 and O3 as compared to the Islamabad due to the narrow roads, enclosing architecture of road network and congestion. Climatic variables also influenced the NO2 and O3 concentration, i.e., temperature is positively related with O3, while negatively related with NO2, relative humidity is directly related with NO2 and inversely related with O3, whereas rainfall show negative association with both NO2 and O3 concentration. Comparing the results with WHO standards reveals that NO2 concentration levels at all the sampling points are above the permissible limit, while ozone concentration is still lower than the WHO standards. Thus, there is a need to take appropriate steps to control these continuously increasing levels of NO2 and O3 before they become a serious hazard for the environment and people living in those areas.  相似文献   
77.
Selected trace metals were estimated by atomic absorption spectrometry in the water and soil samples collected from the remote region of Himalaya. The soil samples were analysed for soluble and acid extractable fraction of trace metals. In water samples, Ca, Na, Mg and K emerged as dominant contributors, whereas, Ca, Na, K, Mg, Fe and Pb were estimated at comparatively higher levels in the water extract of the soil. In case of acid extract of the soil samples, Ca, K, Fe, Mg, Mn and Na were found at elevated concentrations. Based on mean levels of the metals, following decreasing concentration order was observed in water samples: Ca > Na > Mg > K > Pb > Co > Cu > Zn > Mn > Cr > Fe > Cd > Li, however, in the acid extract of the soil, following order was noted: Ca > K > Fe > Mg > Mn > Na > Pb > Zn > Cr > Li > Cu > Co > Cd. The correlation study revealed appreciably diverse mutual relationships of trace metals in the water and soil samples. The multivariate cluster analyses exhibited divergent apportionment of trace metals in water and soil samples. Among the trace metals, Cd, Pb, Li, Zn, Cr, Cu, Mn and Co exhibited extreme to significant anthropogenic enrichment in the soil samples, while the rest of the metals were mostly contributed by the natural processes.  相似文献   
78.
Metal levels in fish have been extensively studied, but little data currently exists for the Middle East. We examined the levels of metals and metalloids (aluminum, arsenic, copper, manganese, selenium, zinc, and mercury) in the flesh of 13 fish species collected from three fishing sites and a local fish market in Jeddah, Saudi Arabia. We tested the following null hypotheses: (1) there are no interspecific differences in metal levels, (2) there are no differences in metal levels in fishes between market and fishing sites, (3) there are no size-related differences in metal levels, and (4) there are no differences in selenium:mercury molar ratio among different fish species. There were significant interspecific differences in concentrations for all metals. There was an order of magnitude difference in the levels of aluminum, arsenic, mercury, manganese, and selenium, indicating wide variation in potential effects on the fish themselves and on their predators. Fishes from Area II, close to a large commercial port, had the highest levels of arsenic, mercury, and selenium, followed by market fishes. Mercury was positively correlated with body size in 6 of the 13 fish species examined. Mercury was correlated positively with arsenic and selenium, but negatively with aluminum, cobalt, copper, manganese, and zinc. Selenium:mercury molar ratios varied significantly among species, with Carangoides bajad, Cephalopholis argus, Variola louti, and Ephinephelus tauvina having ratios below 10:1. These findings can be used in risk assessments, design of mercury reduction plans, development of fish advisories to protect public health, and future management decision-making.  相似文献   
79.
The sustainable management of chemicals and their associated wastes—especially legacy stockpiles—is always challenging. Developing countries face particular difficulties as they often have insufficient treatment and disposal capacity, have limited resources and many lack an appropriate and effective regulatory framework. This paper describes the objectives and the approach of the Egyptian–German Twinning Project under the European Neighbourhood Policy to improve the strategy of managing hazardous substances in the Egyptian Environmental Affairs Agency (EEAA) between November 2008 and May 2011. It also provides an introduction to the Republic of Egypt’s legal and administrative system regarding chemical controls. Subsequently, options for a new chemical management strategy consistent with the recommendations of the United Nations Chemicals Conventions are proposed. The Egyptian legal and administrative system is discussed in relation to the United Nations’ recommendations and current European Union legislation for the sound management of chemicals. We also discuss a strategy for the EEAA to use the existing Egyptian legal system to implement the United Nations’ Globally Harmonized System of Classification and Labelling of Chemicals, the Stockholm Convention and other proposed regulatory frameworks. The analysis, the results, and the recommendations presented may be useful for other developing countries in a comparable position to Egypt aspiring to update their legislation and administration to the international standards of sound management of chemicals.  相似文献   
80.
Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH3) is a central intermediate in plant N metabolism. NH3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH3 to glutamate to form glutamine (Gln), and the second step transfers the NH3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号