首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92927篇
  免费   1229篇
  国内免费   1128篇
安全科学   3808篇
废物处理   3340篇
环保管理   14334篇
综合类   21255篇
基础理论   26603篇
环境理论   74篇
污染及防治   15870篇
评价与监测   5547篇
社会与环境   3872篇
灾害及防治   581篇
  2022年   816篇
  2021年   816篇
  2020年   657篇
  2019年   887篇
  2018年   1185篇
  2017年   1213篇
  2016年   2188篇
  2015年   1838篇
  2014年   2600篇
  2013年   9270篇
  2012年   2279篇
  2011年   2630篇
  2010年   3331篇
  2009年   3446篇
  2008年   2223篇
  2007年   2075篇
  2006年   2450篇
  2005年   2365篇
  2004年   2704篇
  2003年   2508篇
  2002年   2079篇
  2001年   2469篇
  2000年   2101篇
  1999年   1519篇
  1998年   1384篇
  1997年   1364篇
  1996年   1490篇
  1995年   1600篇
  1994年   1493篇
  1993年   1349篇
  1992年   1348篇
  1991年   1313篇
  1990年   1271篇
  1989年   1209篇
  1988年   1055篇
  1987年   993篇
  1986年   999篇
  1985年   1072篇
  1984年   1162篇
  1983年   1174篇
  1982年   1178篇
  1981年   1102篇
  1980年   945篇
  1979年   933篇
  1978年   829篇
  1977年   721篇
  1976年   643篇
  1975年   624篇
  1973年   655篇
  1972年   653篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   
993.
Indicators of ecosystem recovery   总被引:6,自引:0,他引:6  
  相似文献   
994.
ABSTRACT: The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.  相似文献   
995.
ABSTRACT: The vulnerability of wetlands to changes in climate depends on their position within hydrologic landscapes. Hydrologic landscapes are defined by the flow characteristics of ground water and surface water and by the interaction of atmospheric water, surface water, and ground water for any given locality or region. Six general hydrologic landscapes are defined; mountainous, plateau and high plain, broad basins of interior drainage, riverine, flat coastal, and hummocky glacial and dune. Assessment of these landscapes indicate that the vulnerability of all wetlands to climate change fall between two extremes: those dependent primarily on precipitation for their water supply are highly vulnerable, and those dependent primarily on discharge from regional ground water flow systems are the least vulnerable, because of the great buffering capacity of large ground water flow systems to climate change.  相似文献   
996.
Excessive nitrogen (N) loading to N-sensitive waters such as the Neuse River estuary (North Carolina) has been shown to promote changes in microbial and algal community composition and function (harmful algal blooms), hypoxia and anoxia, and fish kills. Previous studies have estimated that wet atmospheric deposition of nitrogen (WAD-N), as deposition of dissolved inorganic nitrogen (DIN: NO3-, NH3/NH4+) and dissolved organic nitrogen, may contribute at least 15% of the total externally supplied or "new" N flux to the coastal waters of North Carolina. In a 3-yr study from June 1996 to June 1999, we calculated the weekly wet deposition of inorganic and organic N at eleven sites on a northwest-southeast transect in the watershed. The annual mean total (wet DIN + wet organics) WAD-N flux for the Neuse River watershed was calculated to be 956 mg N/m2/yr (15026 Mg N/yr). Seasonally, the spring (March-May) and summer (June-August) months contain the highest total weekly N deposition; this pattern appears to be driven by N concentration in precipitation. There is also spatial variability in WAD-N deposition; in general, the upper portion of the watershed receives the lowest annual deposition and the middle portion of the watershed receives the highest deposition. Based on a range of watershed N retention and in-stream riverine processing values, we estimate that this flux contributes approximately 24% of the total "new" N flux to the estuary.  相似文献   
997.
In Brazil most Construction and Demolition Waste (C&D waste) is not recycled. This situation is expected to change significantly, since new federal regulations oblige municipalities to create and implement sustainable C&D waste management plans which assign an important role to recycling activities. The recycling organizational network and its flows and components are fundamental to C&D waste recycling feasibility. Organizational networks, flows and components involve reverse logistics. The aim of this work is to introduce the concepts of reverse logistics and reverse distribution channel networks and to study the Brazilian C&D waste case.  相似文献   
998.
Terrace-contouring systems with on-site water detention cannot be installed in areas of complex topography, small parceling and multi-blade moldboard plow use. However, field borders at the downslope end may be raised at the deepest part where runoff overtops to create detention ponds, which can be drained by subsurface tile outlets and act similar to terrace-contouring systems. Four of such detention ponds were monitored over 8 years. Monitored effects included the prevention of linear erosion down slope, the sediment trapping from upslope, the enrichment of major nutrients in the trapped and delivered sediments, the amount of runoff retained temporarily, the amount of runoff reduced by infiltration, the decrease in peak runoff rate and the decrease in peak concentrations of agrochemicals due to the mixing of different volumes of water within the detention ponds. The detention ponds had a volume of 30–260 m3 ha−1 and trapped 54–85% of the incoming sediment, which was insignificantly to slightly depleted (5–25%) in organic carbon, phosphorus, nitrogen and clay as compared to the eroding topsoil, while the delivered sediment was strongly enriched (+70–270%) but part of this enrichment already resulted from the enrichment of soil loss. The detention ponds temporarily stored 200–500 m3 of runoff. A failure was never experienced. Due to the siltation of the pond bottom, the short filled time (1–5 days) and the small water covered area, infiltration and evaporation reduced runoff by less than 10% for large events. Peak runoff during heavy rains was lowered by a factor of three. Peak concentrations of agrochemicals (Terbutylazin) were lowered by a factor of two. The detention ponds created by raising the downslope field borders at the pour point efficiently reduced adverse erosion effects downslope the eroding site. They are cheap and can easily be created with on-farm machinery. Their efficiency is improved where they are combined with an on-site erosion control like mulch tillage because sediment and runoff input are reduced. Ponds had to be dredged only after the first year when on-site erosion control was not fully effective.  相似文献   
999.
1000.
We examined how long-term operation of anaerobic–oxic and anaerobic–anoxic sequencing batch reactors(SBRs) affects the enhanced biological phosphorus removal(EBPR)performance and sludge characteristics. The microbial characteristics of phosphorus accumulating organism(PAO) and denitrifying PAO(DPAO) sludge were also analyzed through a quantitative analysis of microbial community structure. Compared with the initial stage of operation characterized by unstable EBPR, both PAO and DPAO SBR produced a stable EBPR performance after about 100-day operation. From day 200 days(DPAO SBR)and 250 days(PAO SBR) onward, sludge granulation was observed, and the average granule size of DPAO SBR was approximately 5 times larger than that of PAO SBR. The DPAO granular sludge contained mainly rod-type microbes, whereas the PAO granular sludge contained coccus-type microbes. Fluorescence in situ hybridization analysis revealed that a high ratio of Accumulibacter clade I was found only in DPAO SBR, revealing the important role of this organism in the denitrifying EBPR system. A pyrosequencing analysis showed that Accumulibacter phosphatis was present in PAO sludge at a high proportion of 6%,whereas it rarely observed in DPAO sludge. Dechloromonas was observed in both PAO sludge(3.3%) and DPAO sludge(3.2%), confirming that this organism can use both O_2 and NO_3~- as electron acceptors. Further, Thauera spp. was identified to have a new possibility as denitrifier capable of phosphorous uptake under anoxic condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号