首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30118篇
  免费   343篇
  国内免费   260篇
安全科学   1007篇
废物处理   1458篇
环保管理   4018篇
综合类   4572篇
基础理论   7845篇
环境理论   10篇
污染及防治   7422篇
评价与监测   2145篇
社会与环境   2057篇
灾害及防治   187篇
  2023年   140篇
  2022年   268篇
  2021年   328篇
  2020年   199篇
  2019年   250篇
  2018年   446篇
  2017年   473篇
  2016年   733篇
  2015年   547篇
  2014年   870篇
  2013年   2489篇
  2012年   1033篇
  2011年   1373篇
  2010年   1121篇
  2009年   1163篇
  2008年   1441篇
  2007年   1354篇
  2006年   1227篇
  2005年   1092篇
  2004年   1055篇
  2003年   1001篇
  2002年   939篇
  2001年   1100篇
  2000年   770篇
  1999年   490篇
  1998年   369篇
  1997年   386篇
  1996年   397篇
  1995年   474篇
  1994年   397篇
  1993年   348篇
  1992年   379篇
  1991年   359篇
  1990年   329篇
  1989年   325篇
  1988年   297篇
  1987年   244篇
  1986年   253篇
  1985年   248篇
  1984年   267篇
  1983年   254篇
  1982年   268篇
  1981年   223篇
  1980年   165篇
  1979年   184篇
  1978年   165篇
  1977年   133篇
  1975年   138篇
  1973年   167篇
  1972年   142篇
排序方式: 共有10000条查询结果,搜索用时 377 毫秒
751.
A field study was initiated in 1992 to investigate the long-term impacts of beef feedlot manure application (composted and uncomposted) on nutrient accumulation and movement in soil, corn silage yield, and nutrient uptake. Two application strategies were compared: providing the annual crop nitrogen (N) requirement (N-based rate) or crop phosphorus (P) removal (P-based rate), as well as a comparison to inorganic fertilizer. Additionally, effects of a winter cover crop were evaluated. Irrigated corn (Zea mays L.) was produced annually from 1993 through 2002. Average silage yield and crop nutrient removal were highest with N-based manure treatments, intermediate with P-based manure treatments, and least with inorganic N fertilizer. Use of a winter cover crop resulted in silage yield reductions in four of ten years, most likely due to soil moisture depletion in the spring by the cover crop. However, the cover crop did significantly reduce NO3-N accumulation in the shallow vadose zone, particularly in latter years of the study. The composted manure N-based treatment resulted in significantly greater soil profile NO3-N concentration and higher soil P concentration near the soil surface. The accounting procedure used to calculate N-based treatment application rates resulted in acceptable soil profile NO3-N concentrations over the short term. While repeated annual manure application to supply the total crop N requirement may be acceptable for this soil for several years, sustained application over many years carries the risk of unacceptable soil P concentrations.  相似文献   
752.
This study used the stable 15N isotope to quantitatively examine the effects of cutting on vegetative buffer uptake of NO3(-)-N based on the theory that regular cutting would increase N demand and sequestration by encouraging new plant growth. During the summer of 2002, 10 buffer plots were established within a flood-irrigated pasture. In 2003, 15N-labeled KNO3 was applied to the pasture area at a rate of 5 kg N ha(-1) and 99.7 atom % 15N. One-half of the buffer plots were trimmed monthly. In the buffers, the cutting effect was not significant in the first few weeks following 15N application, with both the cut and uncut buffers sequestering 15N. Over the irrigation season, however, cut buffers sequestered 2.3 times the 15N of uncut buffers, corresponding to an increase in aboveground biomass following cutting. Cutting and removing vegetation allowed the standing biomass to take advantage of soil 15N as it was released by microbial mineralization. In contrast, the uncut buffers showed very little change in 15N sequestration or biomass, suggesting senescence and a corresponding decrease in N demand. Overall, cutting significantly improved 15N attenuation from both surface and subsurface water. However, the effect was temporally related, and only became significant 21 to 42 d after 15N application. The dominant influence on runoff water quality from irrigated pasture remains irrigation rate, as reducing the rate by 75% relative to the typical rate resulted in a 50% decrease in total runoff losses and a sevenfold decrease in 15N concentration.  相似文献   
753.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   
754.
Cadmium solubility and sorption in an arable clay loam soil that had received sewage sludge for 41 years were compared to an unsludged control in batch studies. Soil pH dominated Cd sorption, explaining >92% of the variation in Kd values in both treatments. At any pH, Cd sorption was apparently slightly but significantly (p < 0.05) smaller in the sludge-amended soil compared to the control, even though the organic carbon content was 70% larger and the ammonium oxalate-extractable iron content was roughly doubled. Correction for dissolved organic carbon (DOC) complexation with the speciation model WHAM reduced the difference in sorption between treatments, but the sludged soil still had significantly smaller Kd values (p < 0.01). Batch equilibrations without addition of Cd showed that there was no significant difference in the solubility of "native" cadmium (defined as EDTA-extractable Cd) in sludged and control soils. The reason for the lack of increase in Cd sorption in the sludge-amended soil has not been established, but it may be due to competition for sorption sites on humic compounds with sludge-derived Fe and trace metals such as zinc. The fact that the pyrophosphate-extractable (i.e., organically associated) iron content was seven times larger in the sludged soil provides some supporting evidence for this hypothesis.  相似文献   
755.
For (134/137)Cs, and many other soil contaminants, research into transfer to plants has focused on particular crops and phytoremediation candidates, producing uptake data for a small proportion of all plant taxa. Despite the significance of differences in uptake between plant taxa, the capacity of soil-to-plant transfer models to predict them is currently confined to those taxa for which data exist, there being no method to predict uptake by other taxa. We used residual maximum likelihood (REML) analysis on data from experiments (including 89 plant taxa from China plus 32 phytoremediation candidates) together with data from the literature, to construct a database of relative (134/137)Cs concentrations in 273 plant taxa. The REML (134/137)Cs concentrations in plants are not normally distributed but significantly clustered. Analysis of variance (ANOVA), coded with a recent ordinal phylogeny for flowering plants, showed that plant taxa do not behave independently for (134/137)Cs concentration because 42 and 15% of inter-taxa differences are associated with phylogeny above the species and ordinal level, respectively. In general, Eudicots, and especially the Caryophyllales, Asterales, and Brassicales, have high (134/137)Cs concentrations, while the Fabales and Magnoliids, in particular Poales, have low (134/137)Cs concentrations. Plants of the stress-tolerant ruderal (S-R) growth strategy sensu Grime have, in general, high concentrations of Cs, while those of the competitive (C) and generalist (C-S-R) strategies have low concentrations, although these effects are less pronounced than those of phylogeny. Plant phylogeny and growth strategy might thus be used to predict a significant portion of inter-taxa differences in plant uptake of (134/137)Cs.  相似文献   
756.
Cattle (Bos taurus) producers can replace a part of the traditional diet of barley (Hordeum vulgare L.) grain/silage with sunflower (Helianthus annus L.) seeds or canola meal (Brassica napus L.)/oil to enhance conjugated linoleic acids (CLA) content in milk and meat for its positive health benefits. The objective of this study is to investigate the effects of feeding sunflower or canola to finishing steers on cattle manure chemical properties and volatile fatty acid (VFA) content. The control diet contained 84% rolled barley and 15% barley silage, which provided only 2.6% lipid. The other six treatments had 6.6 to 8.6% lipid delivered from sources such as hay, sunflower seed (SS), canola meal/oil, and SS forage pellets. Manure samples (a mixture of cattle urine, feces, and woodchip bedding materials) were collected and analyzed after cattle had been on these diets for 113 d. The dietary source and level of lipid had no effect on organic N and nitrate N content in manure, but significantly affected ammonia N and VFA. Inclusion of SS forage pellets, hay, or canola meal/oil in cattle diets had no significant impact on manure characteristics, but SS significantly reduced the pH and increased propionic, isobutyric, and isovaleric content. In addition, N loss after excretion (mainly from urine N) increases with the pH and N levels in both feed and manure. The combination of SS with barley silage resulted in a lower VFA and NH3 content in manure and should be a more attractive option. To better manage N nutrient cycles and reduce NH3 related odor problems, feed and manure pH should be one of the factors to consider when determining feed mix rations.  相似文献   
757.
Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.  相似文献   
758.
Relationships between riparian land cover, in-stream habitat, water chemistry, and macroinvertebrates were examined in headwater streams draining an agricultural region of Illinois. Macroinvertebrates and organic matter were collected monthly for one year from three intensively monitored streams with a gradient of riparian forest cover (6, 22, and 31% of riparian area). Bioassessments and physical habitat analyses were also performed in these three streams and 12 other nearby headwater streams. The intensively monitored site with the least riparian forest cover had significantly greater percent silt substrates than the sites with medium and high forest cover, and significantly higher very fine organics in substrates than the medium and high forested sites. Macroinvertebrates were abundant in all streams, but communities reflected degraded conditions; noninsect groups, mostly oligochaetes and copepods, dominated density and oligochaetes and mollusks, mostly Sphaerium and Physella, dominated biomass. Of insects, dipterans, mostly Chironomidae, dominated density and dipterans and coleopterans were important contributors to biomass. Collector-gatherers dominated functional structure in all three intensively monitored sites, indicating that functional structure metrics may not be appropriate for assessing these systems. The intensively monitored site with lowest riparian forest cover had significantly greater macroinvertebrate density and biomass, but lowest insect density and biomass. Density and biomass of active collector-filterers (mostly Sphaerium) decreased with increasing riparian forest. Hilsenhoff scores from all 15 sites were significantly correlated with in-stream habitat scores, percent riparian forest, and orthophosphate concentrations, and multiple regression indicated that in-stream habitat was the primary factor influencing biotic integrity. Our results show that these "drainage ditches" harbor abundant macroinvertebrates that are typical of degraded conditions, but that they can reflect gradients of conditions in and around these streams.  相似文献   
759.
ABSTRACT: High springtime river flows came earlier by one to two weeks in large parts of northern New England during the 20th Century. In this study it was hypothesized that late spring/early summer recessional flows and late summer/early fall low flows could also be occurring earlier. This could result in a longer period of low flow recession and a decrease in the magnitude of low flows. To test this hypothesis, variations over time in the magnitude and timing of low flows were analyzed. To help understand the relation between low flows and climatic variables in New England, low flows were correlated with air temperatures and precipitation. Analysis of data from 23 rural, unregulated rivers across New England indicated little evidence of consistent changes in the timing or magnitude of late summer/early fall low flows during the 20th Century. The interannual variability in the timing and magnitude of the low flows in northern New England was explained much more by the interannual variability in precipitation than by the interannual variability of air temperatures. The highest correlation between the magnitude of the low flows and air temperatures was with May through November temperatures (r =?0.37, p= 0.0017), while the highest correlation with precipitation was with July through August precipitation (r = 0.67, p > 0.0001).  相似文献   
760.
Headwater streams comprise 60 to 80 percent of the cumulative length of river networks. In hilly to mountainous terrain, they reflect a mix of hillslope and channel processes because of their close proximity to sediment source areas. Their morphology is an assemblage of residual soils, landslide deposits, wood, boulders, thin patches of poorly sorted alluvium, and stretches of bedrock. Longitudinal profiles of these channels are strongly influenced by steps created by sediment deposits, large wood, and boulders. Due to the combination of small drainage area, stepped shallow gradient, large roughness elements, and cohesive sediments, headwater streams typically transport little sediment or coarse wood debris by fluvial processes. Consequently, headwaters act as sediment reservoirs for periods spanning decades to centuries. The accumulated sediment and wood may be episodically evacuated by debris flows, debris floods, or gully erosion and transported to larger channels. In mountain environments, these processes deliver significant amounts of materials that form riverine habitats in larger channels. In managed steepland forests, accelerated rates of landslides and debris flows resulting from the harvest of headwater forests have the potential to seriously impact the morphology of headwater streams and downstream resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号