首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   4篇
  国内免费   11篇
安全科学   26篇
废物处理   17篇
环保管理   94篇
综合类   51篇
基础理论   81篇
污染及防治   123篇
评价与监测   42篇
社会与环境   26篇
灾害及防治   3篇
  2023年   5篇
  2022年   12篇
  2021年   15篇
  2020年   4篇
  2018年   10篇
  2017年   9篇
  2016年   15篇
  2015年   11篇
  2014年   14篇
  2013年   48篇
  2012年   10篇
  2011年   24篇
  2010年   19篇
  2009年   16篇
  2008年   20篇
  2007年   22篇
  2006年   19篇
  2005年   11篇
  2004年   16篇
  2003年   17篇
  2002年   17篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1998年   9篇
  1997年   10篇
  1996年   7篇
  1995年   3篇
  1993年   8篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1964年   2篇
  1963年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1955年   3篇
排序方式: 共有463条查询结果,搜索用时 734 毫秒
441.
442.
This is a report of an experimental study on a nanoencapsulation of the organophosphate acephate. Acephate was encapsulated in polyethylene glycol, using a simple, easy-to-replicate method that required no special equipment or conditions. The nanoencapsulation (nanoacephate) was characterized and its bioefficacy as compared to the regular commercial acephate was tested. The biosafety of the new compound was also tested on a murine model. Our new nanoencapsulation scored over the regular variety on all counts. It was found to successfully incorporate the active pesticidal component, acephate and this compound retained greater functional integrity over time as a nanoencapsulation. It was significantly more efficacious than the regular variety. It was biosafe when tested on murine model. We have reason to believe that this nanoencapsulation would allow the use of an organophosphate in a more targeted manner, thereby making it a cost-effective and eco-friendly alternative to the regular variety in use now.  相似文献   
443.
ABSTRACT

From the Indian national point of view, the importance of coal carbonizing industries is great and growing. These industries produce huge quantities of highly polluted effluents and discharge them into rivers without proper treatment. A large coke plant of Bharat Coking Coal Ltd. has been surveyed, and the impact of its effluent on surface water quality is discussed. Approximately 175-200 m3 of effluents are discharged from the plant every day. Land application has been considered as a low-cost means of disposal of coke oven effluents. Column lysimeters were prepared by collecting soil from a nearby agricultural field, putting it layerwise into a column, and compacting it carefully to simulate the original in situ conditions. Raw effluents, diluted effluent, and water (as a blank) were applied to the three lysimeters twice a week with a 5 cm flooding. Upon application of diluted effluent (1:1) into lysimeter No. 2, the leachate collected at 190 cm depth was within the tolerance limit of drinking water standard (IS 10,500). The impact of raw and diluted effluent on groundwater quality and soil are discussed. The renovation efficiency of living filter (lysimeter No. 2) was 99.37% for oil and grease, 86.92% for COD, and 53.22% for TDS, and it is estimated that 2.73 hectares of land can be irrigated with the effluents of the coke plant without deteriorating groundwater and soil quality.  相似文献   
444.
ABSTRACT

Methylcyclopentadienyl manganese tricarbonyl (MMT) has been used in Canada since 1976 as an antiknock agent in gasoline, completely replacing Pb in 1990. An early study of much higher Mn concentrations in gasoline showed that the combustion of MMT leads to the formation of inorganic manganese oxides, especially Mn3O4. Recent emission testing by Lawrence Livermore National Laboratory for Ethyl Corp. has shown that Mn is primarily emitted as a phosphate or sulfate along with minor amounts of oxides. The main objective of this research was to analyze the deposition of Mn from MMT to the terrestrial environment beside the major highways in the greater Toronto area (GTA), Canada. The results were compared with Pb and other trace elements such as Al, Ca, Fe, Mg, Cu, Zn, Na, and the Cl- ion (water extractable) to study the behavior of Mn in soil. The study area was located near major Toronto highways 401 (urban) and 400 (rural), at 43° 67′ N and 79° 37′ W (latitude and longitude) (278,560 and 47,835 cars/day), respectively. Surface soil samples (0–5 cm depth) were collected at distances up to 40 m from the roadside. Parameters evaluated included total and available Mn and other trace elements, particle size, pH, organic content, and cation exchange capacity.  相似文献   
445.
ABSTRACT

As an odorless, nontoxic, and inert compound, sulfur hexafluoride (SF6) is one of the most widely used tracer gases in indoor air quality studies in both controlled and uncontrolled environments. This compound may be subject to reactions with water vapor under elevated temperature to form acidic inorganic compounds such as HF and H2SO4. Thus, in the presence of unvented combustion sources such as kerosene heaters, natural gas heaters, gas log fireplaces, candles, and lamps, the SF6 dissociation may interfere with measurements of the emissions from these sources. Tests were conducted in a research house with a vent-free natural gas heater to investigate these potential interferences. It was observed that the heater operation caused about a 5% reduction of SF6 concentration, which can be an error source for the ventilation rate measurement and consequently the estimated pollutant emission rates. Further analysis indicates that this error can be much greater than the observed 5% under certain test conditions because it is a function of the ventilation flow rate. Reducing the tracer gas concentration has no effect on this error. A simple theoretical model is proposed to estimate the magnitude of this error.

The second type of interference comes from the primary and secondary products of the SF6 dissociation, mainly H2SO4, SO2, HF, and fine particulate matter (PM). In the presence of ~5 ppm SF6, the total airborne concentrations of these species increased by a factor of 4-10. The tests were performed at relatively high SF6 concentrations, which is necessary to determine the interferences quantitatively. The second type of interference can be significantly reduced if the SF6 concentration is kept at a low ppb level.  相似文献   
446.
Abstract

A high-efficiency particulate air (HEPA)-carbon filtration system was developed by the Access Business Group, LLC, to reduce the indoor levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The HEPA filter removes the particle-bound PCDD/Fs, and the carbon filter removes the gaseous fraction. Because of the toxicity of PCDD/Fs, it is very difficult to handle them in the laboratory. In this study, mathematical modeling was performed to evaluate the performance of the HEPA-carbon filtration system for PCDD/Fs removal and to optimize its design and operation. The model was calibrated with experimental data conducted with toluene in a sealed room. Model simulations with four selected congeners demonstrated that it takes ~1 hr for the indoor air treatment system to reach the maximum removal efficiency and that the carbon air filter has a life time of 107 yr for dioxin removal. Given a zero emission from the HEPA filter, the overall removal efficiency is 78.7% for 2,3,7,8-tetrachloro dibenzo-p-dioxins, 89.8% for octa-chlorodibenzodioxin, 78% for tetra-chlorodibenzofuran, and 89.8% for octachlorodibenzofuran. The larger the mass emission from the HEPA filter, the lower the overall removal efficiency, and the larger the ratio of the filter flow rate (Qf) to the room flow rate (Q), the higher the overall removal efficiency. When the ratio of Qf/Q is 15, an overall removal efficiency of 90% can be reached for all four of the selected compounds. The removal of the four selected compounds does not change as the relative humidity increases ≤90%.  相似文献   
447.
ABSTRACT

The exhaust emissions of 17 polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were investigated in two spark-ignition light-duty vehicles, one gasohol-fueled and a flexible-fuel one fueled with hydrated ethanol. Gasohol is a mixture of gasoline and 22% ethanol. The influence of fuel type and quality, lubricant oil type, and use of fuel additives on the formation of these compounds was tested using standardized U.S. Federal Test Procedure (FTP)-75 cycle tests. The sampling of the PCDD/Fs followed the recommendations of a modified U.S. Environmental Protection Agency (EPA) Method 23 (http://www.epa.gov/ttn/emc/promgate/m-23.pdf) and the analysis basically followed the U.S. EPA Method 8290 (http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8290a.pdf). Results showed that emission factors of PCDD/Fs for the gasohol vehicle varied from undetected to 0.068 pg international toxic equivalency (I-TEQ) km?1 (average of 0.0294 pg I-TEQ km?1), whereas in the ethanol vehicle they varied from 0.004 to 0.157 pg (I-TEQ) km?1 (average of 0.031 pg I-TEQ km?1). In the gasohol-powered vehicle, the use of fuel additive diminished the emission of Octachlorodibenzo-p-dioxin (OCDD) significantly, whereas in the ethanol vehicle no significant associations were observed between the investigated variables and the emissions.

IMPLICATIONS The objective of this work was to analyze differences in emissions from a traditional fossil fuel (gasoline) and an alternative renewable fuel (ethanol from sugarcane), and the influence of fuel additives and lubricant oils on the formation of chlorinated dioxins and furans in spark-ignition light-duty gasohol and ethanol vehicles. Renewable fuels are very important in terms of climate change but the risk to the population's health must not increase. Thus the results of this work could help in the development of environmental impact studies as well as orienting policy-makers in formulating strategies for air pollution control.  相似文献   
448.
The exhaust emissions of 17 polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were investigated in two spark-ignition light-duty vehicles, one gasohol-fueled and a flexible-fuel one fueled with hydrated ethanol. Gasohol is a mixture of gasoline and 22% ethanol. The influence of fuel type and quality, lubricant oil type, and use of fuel additives on the formation of these compounds was tested using standardized U.S. Federal Test Procedure (FTP)-75 cycle tests. The sampling of the PCDD/Fs followed the recommendations of a modified U.S. Environmental Protection Agency (EPA) Method 23 (www.epa.gov/ttn/ emc/promgate/m-23.pdf) and the analysis basically followed the U.S. EPA Method 8290 (http://www.epa.gov/osw/ hazard/testmethods/sw846/pdfs/8290a.pdf). Results showed that emission factors of PCDD/Fs for the.gasohol vehicle varied from undetected to 0.068 pg international toxic equivalency (I-TEQ) km(-1) (average of 0.0294 pg I-TEQ km(-1)), whereas in the ethanol vehicle they varied from 0.004 to 0.157 pg (I-TEQ) km(-1) (average of 0.031 pg I-TEQ km(-1)). In the gasohol-powered vehicle, the use of fuel additive diminished the emission of Octachlorodibenzo-p-dioxin (OCDD) significantly, whereas in the ethanol vehicle no significant associations were observed between the investigated variables and the emissions.  相似文献   
449.
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.  相似文献   
450.
Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture, when recommending their respective guidelines for PAHs in outdoor air. The aim of this research is to compare the concentrations and relative abundance of individual PAH and their contribution to the overall carcinogenic potential of the PAH mixture in indoor and outdoor environments to assess the suitability of the UK air quality standard derived for outdoor air for use as a guideline for indoor environments. Samples were collected onto filters using active sampling in different indoor and outdoor microenvironments. The ratio of individual compounds to BaP, the BaP equivalent concentrations and the percentage contribution of each individual compound to the total carcinogenic potential of the PAH mixture were calculated. Mean concentrations were generally lower indoors (BaP=0.10 ng/m(3)) than outdoors (BaP=0.19 ng/m(3)), with the exception of indoor environments with wood burners (BaP=2.4 ng/m(3)) or ETS (BaP=0.6 ng/m(3)). The ratio of individual PAHs to BaP showed no significant differences between indoors (e.g. DahA/BaP=0.27) and outdoors (DahA/BaP=0.31). The relative contribution of BaP to the PAH overall carcinogenic potency is similar indoors (49%), outdoors (54%) and in the smelter environment (48%) used by EPAQS to derive the UK Air Quality Standard for ambient air. These results suggest the suitability of BaP as a marker for the carcinogenic potential of the PAH mixture irrespective of the environment. Despite small differences in PAH mixture composition indoors and outdoors, the level of protection afforded by the present EPAQS standard is likely to be similar whether it is applied to indoor or outdoor air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号