全文获取类型
收费全文 | 202篇 |
免费 | 0篇 |
国内免费 | 11篇 |
专业分类
安全科学 | 7篇 |
废物处理 | 26篇 |
环保管理 | 15篇 |
综合类 | 17篇 |
基础理论 | 47篇 |
污染及防治 | 89篇 |
评价与监测 | 7篇 |
社会与环境 | 5篇 |
出版年
2023年 | 1篇 |
2022年 | 5篇 |
2021年 | 2篇 |
2019年 | 4篇 |
2018年 | 11篇 |
2017年 | 5篇 |
2016年 | 4篇 |
2015年 | 12篇 |
2014年 | 12篇 |
2013年 | 21篇 |
2012年 | 5篇 |
2011年 | 17篇 |
2010年 | 8篇 |
2009年 | 13篇 |
2008年 | 18篇 |
2007年 | 13篇 |
2006年 | 12篇 |
2005年 | 5篇 |
2004年 | 5篇 |
2003年 | 1篇 |
2002年 | 10篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1987年 | 2篇 |
1982年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1973年 | 3篇 |
1971年 | 1篇 |
排序方式: 共有213条查询结果,搜索用时 31 毫秒
131.
Choi Hosoon Chatterjee Piyali Hwang Munok Lichtfouse Eric Sharma Virender K. Jinadatha Chetan 《Environmental Chemistry Letters》2022,20(3):1539-1544
SARS-CoV-2 pandemic continues with emergence of new variants of concerns. These variants are fueling the third and fourth waves of pandemic across many nations. Here we describe the new emerging variants of SARS-CoV-2 and why they have enhanced infectivity and possess the ability to evade immunity.
相似文献132.
1-Hydroxypyrene (1-HP) is a carcinogenic and slightly water-soluble polycyclic aromatic hydrocarbon. Ecotoxicity and mutagenicity of 1-HP and its photoproducts, and the effect of Mn2+ and Cu2+ on their mutagenicity were measured with microbial assay in this study. The assay includes spread plate counting, direct counting, microbial mineralization of 14C-UL-D-glucose and Mutatox Test. At the concentration examined (0.8 microM), the photoproducts (after 1.5 h solar irradiation) of 1-HP inhibited microbial glucose mineralization activity (by 64%) after microbial assemblages of a local reservoir site were exposed for 1 day. However, heterotrophic bacteria were able to utilize 1-HP photoproducts as the growth substrates and increase viability counts by up to 4.75-folds. 1-HP exhibited positive response to Mutatox Test in both direct medium and S-9 medium, with the lowest observable effective concentration of 0.625 microM in the test with direct medium. After photolysis, 1-HP decreased its mutagenicity. Mn2+ (312.5 microM-5 mM) and Cu2+ (6.25-100 microM) themselves are not mutagenic. However, addition of the metal ions before or after photolysis modifies the light readings of 1-HP during the test. Therefore, presence of metal ions could affect the genotoxicity of 1-HP in aquatic environments, depending on timing of the addition. 相似文献
133.
Study of fine sediments for making lightweight aggregate. 总被引:1,自引:0,他引:1
The objective of this study was to investigate the recycling of the fine sediments of Shih-Men Reservoir to manufacture lightweight aggregate. By qualitative and quantitative analysis of the fine sediment and sintered aggregate through soil test, X-ray fluorescence, X-ray diffraction and scanning electron microscopy, a strategy of recycling fine sediment as aggregate for other similar material is proposed. The test results indicate that such fine sediment can be classified as low plastic clay, and clay of such chemical composition is located in the Riley's 'area of bloating'. The particle density of sintered lightweight aggregate decreases when the sintering temperature increases especially above 1200 degrees C due to phase transformation and formation of a vitrified layer on the surface through subsequent dehydration, bloating and collapsing stages. Our findings show that the fine sediment of Shin-Men Reservoir could be a suitable raw material for making expanded lightweight aggregate sintered at 1200 to 1300 degrees C for 10 to 12 min by a programmable furnace and a diffusion process. 相似文献
134.
An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing in those layers. The long-term monitoring results demonstrated that GPR profiling is a promising non-invasive method for use at DNAPL contaminated sites in sandy aquifers where temporal information about immiscible contaminant mass depletion due to either natural flow or remediation is needed. However, our results also indicated that the GPR signature of older DNAPL impacted zones may not differ greatly from the uncontaminated background if significant mass reduction due to dissolution has occurred. 相似文献
135.
Xiaojia He Sabrieon Sanders Winfred G.Aker Yunfeng Lin Jessica Douglas Huey-min Hwang 《环境科学学报(英文版)》2016,28(4):50-60
In this study,the cytotoxicity of two different crystal phases of TiO2 nanoparticles,with surface modification by humic acid(HA),to Escherichia coli,was assessed.The physicochemical properties of TiO2 nanoparticles were thoroughly characterized.Three different initial concentrations,namely 50,100,and 200 ppm,of HA were used for synthesis of HA coated TiO2 nanoparticles(denoted as A/RHA50,A/RHA100,and A/RHA200,respectively).Results indicate that rutile(LC50(concentration that causes 50%mortality compared the control group)=6.5)was more toxic than anatase(LC50=278.8)under simulated sunlight(SSL)irradiation,possibly due to an extremely narrow band gap.It is noted that HA coating increased the toxicity of anatase,but decreased that of rutile.Additionally,AHA50 and RHA50had the biggest differences compared to uncoated anatase and rutile with LC50of 201.9 and21.6,respectively.We then investigated the formation of reactive oxygen species(ROS)by TiO2 nanoparticles in terms of hydroxyl radicals(OH)and superoxide anions(O2-).Data suggested that O2- was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation.We also observed that HA coating decreased the generation of OH and O2- on rutile,but increased O2- formation on anatase.Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E.coli more than anatase. 相似文献
136.
137.
Kinetics of reductive denitrification by nanoscale zero-valent iron 总被引:32,自引:0,他引:32
Zero-valent iron powder (Fe0) has been determined to be potentially useful for the removal of nitrate in the water environment. This research is aimed at subjecting the kinetics of denitrification by nanoscale Fe0 to an analysis of factors affecting the chemical denitrification of nitrate. Nanoscale iron particles with a diameter in the range of 1-100 nm, which are characterized by the large BET specific surface area to mass ratio (31.4 m2/g), removed mostly 50, 100, 200, and 400 mg/l of nitrate within a period of 30 min with little intermediates. Compared with microscale (75-150 microm) Fe0, end product is not ammonia but N2 gas. Kinetics analysis from batch studies revealed that the denitrification reaction with nanoscale Fe0 appeared to be a pseudo first-order with respect to substrate and the observed reaction rate constant (k(obs)) varied with iron content at a relatively low degree of application. The effects of mixing intensity (rpm) on the denitrification rate suggest that the denitrification appears to be coupled with oxidative dissolution of iron through a largely mass transport-limited surface reaction (<40 rpm). 相似文献
138.
The physico-chemical properties and leaching behaviors of phosphatic clay for immobilizing heavy metals 总被引:2,自引:0,他引:2
In this study, phosphatic clay was used as a phosphate containing material. The fractionation of phosphorus was carried out using the CRM BCR-684 protocol, and the inorganic phosphorus, especially all the apatite phosphorus, was found as the major form. The elemental compositions of the phosphatic clay were identified using an X-ray fluorescence spectrometer, and was found to be mainly composed of CaO and P2O5. The specific surface area, pore volume and average pore diameter were measured also. Results of experiment show that the phosphatic clay may provide a cost-effective way to remediate heavy metal contaminated aqueous and slurry phase. 相似文献
139.
Degradative solidification/stabilization (DS/S) is a novel remediation technology that combines chemical degradation with conventional solidification/stabilization. The applicability of the Fe(II)-based DS/S to treating chlorinated alkanes was tested by characterizing degradation reactions of carbon tetrachloride (CT) and its daughter products in cement slurries containing Fe(II). Degradation kinetics of CT and chloroform (CF) were generally very rapid with reaction rates comparable to rates that can be obtained with zero-valent iron. Dechlorination reactions of CT proceeded primarily via a hydrogenolysis pathway, which yielded CF and methylene chloride (MC) as major products and chloromethane and methane as minor products. However, reaction pathways other than hydrogenolysis also appeared to be important at very high pH conditions. MC apparently was resistant to dechlorination reactions over a period of about two months. Kinetics of CT and CF transformation were strongly dependent on pH with an optimal value around 13, which was higher than found previously for PCE. When the initial CF concentration varied between 0.01 and 1 mM, and the Fe(II) dose was 104 mM, pseudo-first-order kinetics generally described the degradation reactions of CF. However, there was also some indication of substrate saturation kinetics in these experiments. This suggests that a saturation model would better describe the kinetics in systems with higher concentration of substrates or lower concentration of the reactive surfaces. 相似文献
140.
Ki Young Park Jae Woo Lee Kyu-Hong Ahn Sung Kyu Maeng Jong Hyuk Hwang Kyung-Guen Song 《Water environment research》2004,76(2):162-167
A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time. 相似文献