首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
安全科学   3篇
废物处理   2篇
环保管理   14篇
综合类   12篇
基础理论   6篇
环境理论   1篇
污染及防治   9篇
评价与监测   7篇
社会与环境   3篇
灾害及防治   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  1999年   1篇
  1998年   2篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1967年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
51.
This study investigated the effect of inoculation of white rot fungus, Pleurotus ostreatus, incubation time, and levels of contamination on anthracene degradation in contaminated soil over a 90-day period. Control samples were set up to compare rates of degradation at different levels of anthracene contamination in soil. Using HPLC, extracts from soil were analyzed on intervals of 30 days to determine the level of anthracene remaining in soil. After 90 days of incubation, it was observed that time, level of contamination, and fungal treatment affected the rate of degradation of all levels of anthracene contamination, inoculated soil showed more degradation of anthracene (76–89%) compared to control soil (33–51%). It was also observed that concentration of the anthracene increased at different sampling dates in some of the soil samples. In this study, such increase in anthracene concentration was attributed to errors of extraction, sorption of the anthracene to soil particles, and possible repolymerization of anthracene in soil organic matter. The release of ligninolytic enzymes such as lignin peroxidase, laccase, and manganese peroxidase by Pleurotus ostreatus was associated with the anthracene degradation observed. A general observation indicates that an interaction between time, level of contamination, and soil treatment is vital in the degradation of high levels of anthracene contamination by the white rot fungus.  相似文献   
52.
Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate–pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.  相似文献   
53.
The stabilization potential of negatively charged sodium carboxymethyl cellulose (CMC) solution was assessed through investigation of its retention on clays under environmental conditions that promote soil desiccation. Sodium montmorillonite and kaolinite, commonly used in clayey soils, were mixed with aqueous CMC solutions in concentrations ranging from 0 to 10 g/L. These samples were dried in a specially-designed desiccation chamber which was operated at a temperature of 25°C and relative humidity of 30%. The results show an inverse proportionality between liquid loss and CMC concentration. Liquid loss from clayey soil follows the first-order reaction with a rate constant in the range of 4.6–6.7 mg/h. CMC half-lives on sodium montmorillonite during desiccation ranged from 103 to 181 h for an aqueous concentration range of 0.5–10 g/L compared to 108 h for distilled water. For kaolinite, more liquid was retained at 10 g/L CMC concentration than at other concentrations, but liquid retention was generally insignificant. These conclusions are valid for a desiccation duration of 890 h, a time that is reasonably simulative of the duration of exposures of bare ground surfaces to weather elements. The experimental results are explained in terms of the role of CMC molecular interactions with clay minerals in controlling fluid flow to desiccating clay surfaces.  相似文献   
54.
55.
Climate change will impact on ecological, social, and economic elements of fisheries; however, the three are seldom considered in an integrated fashion. We develop a fishery-level assessment of economic resilience to climate change for the Tasmanian rock lobster fishery, a linked social–ecological system. We outline the main climate change forcing influences that link climate change to the fishery via changes in lobster abundance, distribution, and phenology. Using a bottom-up approach, we identify twelve economic attributes strongly related to the fisheries’ economic resilience to climate change. Resilience attributes are grouped according to the level of the economic domain (business, sectoral, and governance). Attributes are then evaluated to determine the overall economic resilience of the rock lobster fishery in the context of the specific nature of predicted climate change effects. We identify areas of low resilience in the economic sub-system for this fishery. Evaluating the economic resilience of regional fisheries using this integrated, interdisciplinary framework provides a practical, parsimonious, and conceptually sound basis for undertaking comprehensive and contextually tailored assessments of climate change impacts and economic vulnerability. The framework can be extended to include a broader range of climate change impacts and the social domain of the human sub-system.  相似文献   
56.
The growth of electronic waste (e-waste) is of increasing concern because of its toxic content and low recycling rates. The e-waste recycling infrastructure needs to be developed, yet little is known about people's willingness to fund its expansion. This paper examines this issue based on a 2004 mail survey of California households. Using an ordered logit model, we find that age, income, beliefs about government and business roles, proximity to existing recycling facilities, community density, education, and environmental attitudes are significant factors for explaining people's willingness to pay an advanced recycling fee (ARF) for electronics. Most respondents are willing to support a 1% ARF. Our results suggest that policymakers should target middle-aged and older adults, improve programs in communities with existing recycling centers or in rural communities, and consider public-private partnerships for e-waste recycling programs.  相似文献   
57.
Background concentrations of 18 air toxics for North America   总被引:1,自引:0,他引:1  
The U.S. Clean Air Act identifies 188 hazardous air pollutants (HAPs), or "air toxics," associated with adverse human health effects. Of these air toxics, 18 were targeted as the most important in a 10-City Pilot Study conducted in 2001 and 2002 as part of the National Air Toxics Trend Sites Program. In the present analysis, measurements available from monitoring networks in North America were used to estimate boundary layer background concentrations and trends of these 18 HAPs. The background concentrations reported in this study are as much as 85% lower than those reported in recent studies of HAP concentrations. Background concentrations of some volatile organic compounds were analyzed for trends at the 95% confidence level; only carbon tetrachloride (CCI4) and tetrachloroethylene decreased significantly in recent years. Remote background concentrations were compared with the one-in-a-million (i.e., 10(6)) cancer benchmarks to determine the possible causes of health risk in rural and remote areas; benzene, chloroform, formaldehyde, and chromium (Cr) fine particulate were higher than cancer benchmark values. In addition, remote background concentrations were found to contribute between 5% and 99% of median urban concentrations.  相似文献   
58.
Environmental Science and Pollution Research - Studies have proven that client satisfaction (CS) is greatly affected by the nature of construction practices on site. However, not much attention has...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号