首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   32篇
  国内免费   8篇
安全科学   52篇
废物处理   43篇
环保管理   255篇
综合类   82篇
基础理论   258篇
环境理论   2篇
污染及防治   199篇
评价与监测   67篇
社会与环境   34篇
灾害及防治   8篇
  2023年   8篇
  2022年   16篇
  2021年   12篇
  2020年   6篇
  2019年   14篇
  2018年   20篇
  2017年   21篇
  2016年   28篇
  2015年   30篇
  2014年   26篇
  2013年   60篇
  2012年   58篇
  2011年   58篇
  2010年   40篇
  2009年   60篇
  2008年   68篇
  2007年   60篇
  2006年   56篇
  2005年   32篇
  2004年   42篇
  2003年   39篇
  2002年   35篇
  2001年   9篇
  2000年   15篇
  1999年   14篇
  1998年   14篇
  1997年   11篇
  1996年   14篇
  1995年   15篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   4篇
  1983年   8篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有1000条查询结果,搜索用时 897 毫秒
791.
A critical decision in species conservation is whether to target individual species or a complex of ecologically similar species. Management of multispecies complexes is likely to be most effective when species share similar distributions, threats, and response to threats. We used niche overlap analysis to assess ecological similarity of 3 sensitive desert fish species currently managed as an ecological complex. We measured the amount of shared distribution of multiple habitat and life history parameters between each pair of species. Habitat use and multiple life history parameters, including maximum body length, spawning temperature, and longevity, differed significantly among the 3 species. The differences in habitat use and life history parameters among the species suggest they are likely to respond differently to similar threats and that most management actions will not benefit all 3 species equally. Habitat restoration, frequency of stream dewatering, non‐native species control, and management efforts in tributaries versus main stem rivers are all likely to impact each of the species differently. Our results demonstrate that niche overlap analysis provides a powerful tool for assessing the likely effectiveness of multispecies versus single‐species conservation plans. Evaluación de la Posible Efectividad del Manejo Multi‐Especie paraPeces de Desierto en Peligro Mediante el Análisis de Traslape de Nichos  相似文献   
792.
The fundamental challenge of evaluating the impact of conservation interventions is that researchers must estimate the difference between the outcome after an intervention occurred and what the outcome would have been without it (counterfactual). Because the counterfactual is unobservable, researchers must make an untestable assumption that some units (e.g., organisms or sites) that were not exposed to the intervention can be used as a surrogate for the counterfactual (control). The conventional approach is to make a point estimate (i.e., single number along with a confidence interval) of impact, using, for example, regression. Point estimates provide powerful conclusions, but in nonexperimental contexts they depend on strong assumptions about the counterfactual that often lack transparency and credibility. An alternative approach, called partial identification (PI), is to first estimate what the counterfactual bounds would be if the weakest possible assumptions were made. Then, one narrows the bounds by using stronger but credible assumptions based on an understanding of why units were selected for the intervention and how they might respond to it. We applied this approach and compared it with conventional approaches by estimating the impact of a conservation program that removed invasive trees in part of the Cape Floristic Region. Even when we used our largest PI impact estimate, the program's control costs were 1.4 times higher than previously estimated. PI holds promise for applications in conservation science because it encourages researchers to better understand and account for treatment selection biases; can offer insights into the plausibility of conventional point‐estimate approaches; could reduce the problem of advocacy in science; might be easier for stakeholders to agree on a bounded estimate than a point estimate where impacts are contentious; and requires only basic arithmetic skills.  相似文献   
793.
A novel hybrid model has been developed to support the provision of real-time air quality forecasts. Statistical techniques have been applied in parallel with air mass history modelling to provide an efficient and accurate forecasting system with the ability to identify high NO2 events, which tend to be the episodes of most significance in Ireland. Air mass history modelling and k-means clustering are used to identify air mass types that lead to high NO2 levels in Ireland. Trajectory matching techniques allow data associated with these air masses to be partitioned during model development. Non-parametric regression (NPR) has been applied to describe nonlinear variations in concentration levels with wind speed, direction and season and produce a set of linearized factors which, together with other meteorological variables, are employed as inputs to a multiple linear regression. The model uses an innovative integrated approach to combine the NPR with the air mass history modelling results. On validation, a correlation coefficient of 0.75 was obtained, and 91 % of daily maximum (hourly averaged) NO2 predictions were within a factor of two of the measured value. High pollution events were well captured, as indicated by strong agreement between measured and modelled high percentile values. The model requires only simple input data, does not require an emission inventory and utilises very low computational resources. It represents an accurate and efficient means of producing real-time air quality forecasts and, when used in combination with forecaster experience, is a useful tool for identifying periods of poor air quality 24 h in advance. The hybrid approach outlined in this paper can easily be applied to produce high-quality forecasts of both NO2 and additional pollutants at new locations/countries where historical monitoring data are available.  相似文献   
794.
Climate‐change vulnerability assessments (CCVAs) are valuable tools for assessing species’ vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species’ vulnerability to climate change.  相似文献   
795.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   
796.
Regional Environmental Change - This study applied catchment modeling to examine the potential effects of climate change and future land management variations on streamflow and microbial transport...  相似文献   
797.
We estimated the biological and economic impacts of climate change on freshwater fisheries in the United States (U.S.). Changes in stream temperatures, flows, and the spatial extent of suitable thermal habitats for fish guilds were modeled for the coterminous U.S. using a range of projected changes in temperature and precipitation caused by increased greenhouse gases (GHGs). Based on modeled shifts in available thermal habitat for fish guilds, we estimated potential economic impacts associated with changes in freshwater recreational fishing using a national-scale economic model of recreational fishing behavior. In general, the spatial distribution of coldwater fisheries is projected to contract, being replaced by warm/cool water and high-thermally tolerant, lower recreational priority (i.e., “rough”) fisheries. Changes in thermal habitat suitability become more pronounced under higher emissions scenarios and at later time periods. Under the highest GHG emissions scenario, by year 2100 habitat for coldwater fisheries is projected to decline by roughly 50 % and be largely confined to mountainous areas in the western U.S. and very limited areas of New England and the Appalachians. The economic model projects a decline in coldwater fishing days ranging from 1.25 million in 2030 to 6.42 million by 2100 and that the total present value of national economic losses to freshwater recreational fishing from 2009 to 2100 could range from $81 million to $6.4 billion, depending on the emissions scenario and the choice of discount rate.  相似文献   
798.
The use of biopsy plugs to sample fish muscle tissue for mercury analyses is a viable alternative to lethal sampling; however, the practice has yet to be widely implemented in routine monitoring due to concerns about variability of mercury concentrations in fish muscle tissues. Here we examine distribution of mercury in fillets of four fish species (Walleye, Northern Pike, Smallmouth Bass and Lake Trout), suitability of left/right side of fillet for biopsy sampling, and appropriateness of re-using a biopsy punch. The results showed that average mercury concentrations in left and right fillets of fish are similar. Mercury concentrations in biopsy plug samples, taken from the anterior dorsal area of the fish fillet, were statistically equivalent to the mercury concentrations in homogenized fillets. There was no discernible cross contamination between samples when a biopsy punch was reused after washing in hot soapy water, and as such, biopsy punches can be recycled during sampling to reduce the sampling cost. If a tissue mass collected from a specific site on the fillet is insufficient, then we suggest sampling corresponding locations on the other fillet rather than sampling two adjacent sites on one fillet to obtain more tissue. The results presented here can improve the accuracy of fillet biopsy plug sampling, minimize fish mortality for mercury monitoring, and reduce labor and material costs in monitoring programs.  相似文献   
799.
Economic incentives for sequestering atmospheric carbon dioxide (CO2) in forests may be an effective way to meet greenhouse gas (GHG) reduction commitments under the Kyoto Protocol (KP). But concerns have been raised that the KP may create unintended incentives to excessively harvest existing forests if regenerated forests qualify for carbon (C) credits under the reforestation provision of Article 3.3. This paper combines an analytical model of the optimal forest rotation with both timber and C as priced outputs with data on timber and C growth and yield to different forest settings in the U.S. C prices of $50 per megagram (Mg) – the highest price evaluated– can considerably lengthen forest rotations (40 years or more), raise forest land values (as much as $1,900 per hectare), and sequester more C in the long run (up to 60 percent per acre), relative to the base case of no C compensation. However, if C payments are made for the regenerated stand only, in some situations, it is optimal to immediately harvest an otherwise premature stand at C prices as low as $20/Mg. The strength of perverse incentives to accelerate harvesting of existing forest varies by forest type, region, C price level, and institutional factors relevant to the compensation system. If C compensation were extended to existing stands, as may be possible under Article 3.4 of the KP, the perverse incentives for prematurely harvesting existing stands would not exist.  相似文献   
800.
在评价北极陆地生态系统影响时,人们常常强调物种和生态系统对环境变化响应的地理变化,这种变化往往与气候、生物多样性、植被带、生态系统结构和功能的南-北梯度相关联,可是,环境、生态系统的功能和结构上,以及环境史和当前气候变化的明显东-西变化显然也很重要.尽管一些地方变得温暖,但另一些地方却降温了,海洋、群岛和山脉等地理屏障的东西差异过去也对物种和植被带响应气候变化而改变分布区的能力产生了很大影响,同时,这些地理屏障为种群遗传分化和生物多样性热点区的形成提供了必要的隔离条件,这些屏障在未来气候变暖时,也将影响物种重新分布的能力.为了说明这种东西向的变化,同时也避免过分笼统或过于专业化,基于大尺度的天气和气候形成因素,北极气候影响评价项目确定了4个主要亚区.通过模拟与4个北极气候影响评价亚区有关的主要信息,导致物种分布区发生改变的地理屏障,特别是大陆的分布和海洋产生的隔离,明显会影响植被带的向北移动.对植被区向北移动的地理限制或者促进将影响将来碳的贮存和释放,以及生物圈与大气之间水和能量的交换.此外,气候变化使受威胁物种数量在各个亚区之间差别很大(白令海地区别尤其是热点),各个植被亚区重新分布的能力差异将影响每个区的生物多样性.总而言之,亚区分析表明,在整个北极地区水平上概括生态系统结构和功能的反应、物种的丧失,以及生物圈对气候系统的反馈的趋势是困难的,说明需要对北极陆地生态系统对于气候变化响应的空间变化性有深刻的认识.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号