首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19481篇
  免费   199篇
  国内免费   183篇
安全科学   551篇
废物处理   803篇
环保管理   2697篇
综合类   2734篇
基础理论   5100篇
环境理论   5篇
污染及防治   5654篇
评价与监测   1248篇
社会与环境   933篇
灾害及防治   138篇
  2022年   143篇
  2021年   180篇
  2020年   117篇
  2019年   165篇
  2018年   292篇
  2017年   282篇
  2016年   447篇
  2015年   403篇
  2014年   572篇
  2013年   1615篇
  2012年   663篇
  2011年   861篇
  2010年   683篇
  2009年   792篇
  2008年   894篇
  2007年   956篇
  2006年   822篇
  2005年   678篇
  2004年   727篇
  2003年   652篇
  2002年   669篇
  2001年   802篇
  2000年   580篇
  1999年   323篇
  1998年   247篇
  1997年   241篇
  1996年   284篇
  1995年   292篇
  1994年   265篇
  1993年   232篇
  1992年   217篇
  1991年   204篇
  1990年   216篇
  1989年   200篇
  1988年   186篇
  1987年   175篇
  1986年   151篇
  1985年   150篇
  1984年   179篇
  1983年   176篇
  1982年   173篇
  1981年   171篇
  1980年   138篇
  1979年   163篇
  1978年   110篇
  1977年   102篇
  1976年   90篇
  1975年   96篇
  1973年   93篇
  1972年   101篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
931.
Abstract

To reduce public exposure to diesel particulate matter (DPM), the California Air Resources Board has begun adoption of a series of rules to reduce these emissions from in-use heavy-duty vehicles. Passive diesel particulate filter (DPF) after-treatment technologies are a cost-effective method to reduce DPM emissions and have been used on a variety of vehicles worldwide. Two passive DPFs were interim-verified in California and approved federally for use in most 1994–2002 engine families for vehicles meeting min engine exhaust temperature requirements for successful filter regeneration. Some vehicles, however, may not be suited to passive DPFs because of lower engine exhaust temperatures. The purpose of this study was to determine the applicability of two types of passive DPFs to solid waste collection vehicles, the group of vehicles for which California recently mandated in-use DPM reductions. We selected 60 collection vehicles to represent the four main types of collection vehicle duty cycles—roll-offs, and front-end, rear, and side loaders—and collected second-by-second engine exhaust temperature readings for one week from each vehicle. As a group, the collection vehicles exhibited low engine exhaust temperatures, making the application of passive DPFs to these vehicles difficult. Only 35% of tested vehicles met the temperature requirements for one passive DPF, whereas 60% met the temperature requirements for the other. Engine exhaust temperatures varied by vehicle type. Side and front-end loaders met the engine exhaust temperature requirements in the greatest number of cases with ~50–90% achieving the required regeneration temperatures. Only 8–25% of the rear loader and roll-off collection vehicles met the engine exhaust temperature requirements. Solid waste collection vehicles represent a diverse fleet with a variety of duty cycles. Low engine exhaust temperatures will need to be addressed for successful use of passive DPFs in this application.  相似文献   
932.
Abstract

The production of broiler chickens has become one of the largest sectors in U.S. agriculture, and the growing demand for poultry has led to an annual production growth rate of 5%. With increased demand for poultry, litter management has become a major challenge in the agriculture industry. Although the catalytic steam gasification has been accepted as a possible and feasible method for litter management, concern has been expressed about the presence of nitrogen and phosphorus containing species in the fuel gas and/or in the final solid residue. The possible release of phosphorus as phosphine gas in the fuel gas can have an adverse impact on the environment. Similarly, possible release of ammonia from the nitrogen containing species is also not acceptable. Hence, under partial U.S. Department of Agriculture support, a study was conducted to examine the fate and the environmental impact of the nitrogen- and phosphorus-containing species released during catalytic steam gasification of poultry litter. From various preliminary tests, it was concluded that most (~100%) of the phosphorus would remain in the residue, and some (20–70%) of the nitrogen would end up as ammonia in the fuel gas. The effects of temperature, catalyst loading, and type of catalyst on ammonia liberation were studied in a muffled furnace setup at atmospheric pressure. The fraction of nitrogen released as ammonia was found to decrease with an increase in temperature during pyrolysis and steam gasification. It also decreased with an increase in catalyst loading.  相似文献   
933.
Abstract

To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   
934.
Abstract

The goal of the Regional Haze Rule (RHR) is to return visibility in class I areas (CIAs) to natural levels, excluding weather-related events, by 2064. Whereas visibility, the seeing of scenic vistas, is a near instantaneous and sight-path-dependent phenomenon, reasonable progress toward the RHR goal is assessed by tracking the incremental changes in 5-yr average visibility. Visibility is assessed using a haze metric estimated from 24-hr average aerosol measurements that are made at one location representative of the CIA. It is assumed that, over the 5-yr average, the aerosol loadings and relative humidity along all of the site paths are the same and can be estimated from the 24-hr measurements. It is further assumed that any time a site path may be obscured by weather (e.g., clouds and precipitation), there are other site paths within the CIA that are not. Therefore, when calculating the haze metric, sampling days are not filtered for weather conditions. This assumption was tested by examining precipitation data from multiple monitors for four CIAs. It is shown that, in general, precipitation did not concurrently occur at all monitors for a CIA, and precipitation typically occurred 3-8 hr or less in a day. In a recent paper in this journal, Ryan asserts that the haze metric should include contributions from precipitation and conducted a quantitative assessment incorrectly based on the assumption that the Optec NGN-2 nephelometer measurements include the effects of precipitation. However, these instruments are programmed to shut down during rain events, and any data logged are in error. He further assumes that precipitation occurs as often on the haziest days as the clearest days and that precipitation light scattering (bprecip) is independent of geographic location and applied an average bprecip derived for Great Smoky Mountains to diverse locations including the Grand Canyon. Both of these assumptions are shown to be in error.  相似文献   
935.
Soft sediments are often highly polluted as many of the toxic chemicals introduced into surface waters bind to settling particles. The resulting accumulation of pollutants in the sediments poses a risk for benthic communities. However, pollution induced changes in benthic communities have been difficult to determine when using macro-invertebrates as bioindicators, as these organisms are often absent in soft sediment. The present study therefore examined the ability of meiofaunal organisms, specifically, nematodes, to assess the ecological status of soft sediments. Over a 9-year period, nematode communities present in sediments collected from large rivers and lake Constance in Germany were studied. These sediments showed a large range of physico-chemical properties and anthropogenic contamination. After the degree of metal and organic contamination was translated into ecotoxicologically more relevant toxic units (TUs), multivariate methods were used to classify nematode taxa in species at risk (NemaSPEAR) or not at risk (NemaSPE(not)AR). This approach clearly distinguished the influence of sediment texture from that of the toxic potential of the samples and thus allowed classification of the nematode species according to their sensitivity to or tolerance of toxic stress. Two indices, expressing the proportion of species at risk within a sample (NemaSPEAR[%](metal), NemaSPEAR[%](organic)), were calculated from independent data sets obtained in field and experimental studies and showed good correlations with the toxic potential (field data) or chemical concentrations (microcosm data). NemaSPEAR[%] indices for metal and organic pollution were therefore judged to be suitable for assessing the impact of chemical contamination of freshwater soft sediments.  相似文献   
936.
The application of engineered nanomaterials increases strongly. Development of analytical techniques and their application to environmental samples is essential for human and environmental risk assessment of the nanoparticles. The objective of this study was to develop a sensitive analytical method to quantify nC(60) in water, using accurate mass screening liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. nC(60) can be transformed by oxidation, reduction and photochemical reaction. Therefore, the formation of some transformation products of nC(60) was studied as well. Finally, the developed analytical method was applied to surface water samples from several locations in the Netherlands. The developed method enabled to detect and quantify aqueous concentrations of the summed nC(60) and its transformation products as low as 5 ng/L. It was observed that nC(60) transformation products exceed quantities of the parent C(60). Despite the high sensitivity of the developed method, no nC(60) or transformation products were detected in an array of Dutch surface waters. This might be due to low emissions, losses in the aqueous phase by sedimentation, sorption or further transformation processes.  相似文献   
937.
The health status of European aquatic environments, including transitional waters such as coastal lagoons, is regulated by the Water Framework Directive (WFD), which requires the classification of the water bodies' environmental quality and the achievement of a good ecological status by 2015. In the Venice lagoon, a transitional water body located in the northeastern part of Italy, the achievement of a good ecological status is hampered by several anthropogenic and natural pressures, such as sediment and water chemical contamination, and sediment erosion. In order to evaluate the lagoon's environmental quality according to the WFD (i.e. 5 quality classes, from High to Bad), an integrated Weight-of-Evidence methodology was developed and applied to classify the quality of the lagoon water bodies, integrating biological, physico-chemical, chemical, ecotoxicological, and hydromorphological data (i.e. Lines of Evidence, LOE). The quality assessment was carried out in two lagoon habitat typologies (previously defined on the basis of morphological, sediment, and hydrodynamic characteristics) which were selected taking into account the ecological gradient from sea to land, and the differences in anthropogenic pressure and contamination levels. The LOE classification was carried out by using indicators scored by comparing site specific conditions to reference conditions measured in lagoon reference sites, or provided by local, national or European regulations (e.g. Environmental Quality Standards, EQS, for chemicals). Finally, the overall quality status for each water body was calculated by a probabilistic approach, i.e. by reporting the final result as the frequency distribution of quality classes. The developed procedure was applied by using data and information concerning selected LOE and collected from monitoring programs and research studies carried out in the last 15 years in the lagoon of Venice. A set of sampling stations characterized by spatially and temporally coherent information for each LOE was selected, and among these stations, potential reference sites for each water body typology were identified. The quality assessment highlighted that there are specific lagoon areas, especially those located near the industrially developed area, which are highly affected by anthropogenic activities, and that chemical contamination is one of the main pressures affecting ecological status (e.g. macro-benthonic biodiversity) in the Venice lagoon. The integrated quality assessment procedure that was developed provided a new tool supporting decision making, as well as lagoon assessment and management.  相似文献   
938.
939.
The extensive use of nanoparticles (NPs) in a variety of applications has raised great concerns about their environmental fate and biological effects. This study examined the impact of dissolved organic matter (DOM) and salts on ZnO NP dispersion/solubility and toxicity to the earthworm Eisenia fetida. To be able to better evaluate the toxicity of NPs, exposure in agar and on filter paper was proposed for enabling a comparison of the importance of different uptake routes. A dose-related increase in mortality was observed in earthworms exposed in agar with almost 100% mortality after 96 h exposure to the highest concentration (1000 mg ZnO/kg agar). Scanning electron microscopy (SEM) showed that the addition of salts enhanced the aggregation of ZnO NPs in agar and consequently affected the dissolution behavior and biological availability of the particles. On filter paper, mortality was the highest at the lowest exposure concentration (50 mg ZnO/L) and seemed to decrease with increasing exposure levels. TEM images of ZnO showed that the solubility and morphology of NPs were changed dramatically upon the addition of humic acids (HA). The subcellular distribution pattern of Zn in earthworms after 96 h exposure in agar and on filter paper showed that the Zn taken up via dietary ZnO particles (from agar) was mainly found in organelles and the cytosol while the Zn accumulated as soluble Zn from filter paper was mainly distributed in cell membranes and tissues. Antioxidant enzymatic activities (SOD, CAT, and GSH-px) were investigated in the worms surviving the toxicity tests. A slight increase of SOD activities was observed at the lowest exposure dose of ZnO (50mg/kg), followed by a decrease at 100mg/kg in the agar cubes. Activities of both CAT and GSH-Px enzymes were not significantly influenced in the worms exposed to agar, although a slight decrease at 500 and 1000 mg ZnO/kg agar was observed. A similar change trend of SOD activities was observed for the earthworms on filter paper, but a significant decrease began at a higher ZnO NP concentration of 500 mg ZnO/L. The use of soil extracts instead of deionized water (DW) to simulate a realistic exposure system significantly reduced the toxicity of the ZnO NPs on filter paper, which increases the predictive power of filter paper toxicity tests for the environmental risk assessment of NPs.  相似文献   
940.
There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive 135Cs/137Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these 135Cs/137Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号