The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.
Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone. 相似文献
Data on the ratio of stable carbon isotopes in xylotrophic fungi and their xylic substrates are presented for the first time. It is shown that coniferous substrates are more enriched in the heavy carbon isotope, compared to deciduous substrates. In both cases, however, their carbon isotope composition is characterized by low variability and does not correlate with the species or physiological type of decomposer fungus but shows a statistically significant correlation with the degree of wood mineralization. The ratio of stable carbon isotopes in the fungi depends on that in their substrates but is shifted in favor of the heavier isotope. This trophic shift lacks species specificity, is equally manifested in decomposers of deciduous and coniferous substrates, remains unchanged along the latitudinal climatic gradient, and is positively correlated with the carbon isotope composition of substrates, in the absence of correlation with the degree of their mineralization. 相似文献
Glaucium flavum Crantz. is a short-lived perennial herb distributed in coastal zones from the Black Sea to southern, western and north-western Europe. Despite its diminishing area of distribution and potential pharmacological value, little is known about the ecophysiological features of this coastal species. We investigated the photosynthetic performance of G. flavum by measuring gas exchange, chlorophyll fluorescence, photosynthetic pigment concentration and leaf water content over the space of a year in a coastal habitat of SW Spain. We also measured the variation in total concentrations of nitrogen, phosphorus, sulphur, potassium, calcium and magnesium, in the leaves and soil, throughout the study period. G. flavum showed a high resistance to summer drought conditions which appeared to be due to the high degree of stomatal control. The potential photochemical efficiency of photosystem II showed minimum values during the winter, indicating that low temperatures can produce negative effects within the photosynthetic apparatus. However, the marked decline in net photosynthesis during the winter seems to be mainly related to a loss of metabolic activity. Although leaf nutrient concentrations were, in general, within the normal ranges, phosphorus availability seems to be limited by the high calcium concentrations detected in the soil of the study site. Our study points out the efficiency of the different physiological adaptations of this rare and endangered coastal species in coping with the strong seasonal variability of the Mediterranean climate. 相似文献
While rural transformations are nothing new in human history, current processes of rural change occur under multiple forces at an unprecedented pace, involving profound and unexpected changes in land use and users, and rapid transformations in the metabolic patterns of rural systems. The present special section aims to shed light on current drivers and pathways of rural change by analyzing, under a common conceptual and theoretical framework, examples of new ruralities that are emerging as responses across different world regions. Within this context, this introduction presents: (1) common research questions of the six presented cases of rural change; (2) the general theoretical and methodological framework of integrated assessment of societal metabolism adopted to analyze rural systems and (3) the main contributions and conclusions that could be drawn from six context-specific case studies from Asia, Latin America and Europe. 相似文献
This study presents an evaluation of summertime ozone concentrations over North America (NA) and Europe (EU) using the database generated from Phase 1 of the Air Quality Model Evaluation International Initiative (AQMEII). The analysis focuses on identifying temporal and spatial features that can be used to stratify operational model evaluation metrics and to test the extent to which the various modeling systems can replicate the features seen in the observations. Using a synoptic map typing approach, it is demonstrated that model performance varies with meteorological conditions associated with specific synoptic-scale flow patterns over both eastern NA and EU. For example, the root mean square error of simulated daily maximum 8-hr ozone was twice as high when cloud fractions were high compared with when cloud fractions were low over eastern NA. Furthermore, results show that over both NA and EU the regional models participating in AQMEII were able to better reproduce the observed variance in ambient ozone levels than the global model used to specify chemical boundary conditions, although the variance simulated by almost all regional models is still less that the observed variance on all spatiotemporal scales. In addition, all modeling systems showed poor correlations with observed fluctuations on the intraday time scale over both NA and EU. Furthermore, a methodology is introduced to distinguish between locally influenced and regionally representative sites for the purpose of model evaluation. Results reveal that all models have worse model performance at locally influenced sites. Overall, the analyses presented in this paper show how observed temporal and spatial information can be used to stratify operational model performance statistics and to test the modeling systems’ ability to replicate observed temporal and spatial features, especially at scales the modeling systems are designed to capture.
Implications: The analyses presented in this paper demonstrate how observed temporal and spatial information can be used to stratify operational model performance and to test the modeling systems’ ability to replicate observed temporal and spatial features. Decisions for the improvement of regional air quality models should be based on the information derived from only regionally representative sites. 相似文献
Laboratory toxicity tests are a key component of the aquatic risk assessments of chemicals. Toxicity tests with Myriophyllum spicatum are conducted based on working procedures that provide detailed instructions on how to set up the experiment, e.g., which experimental design is necessary to get reproducible and thus comparable results. Approved working procedures are established by analyzing numerous toxicity tests to find a compromise between practical reasons (e.g., acceptable ranges of ambient conditions as they cannot be kept completely constant) and the ability for detecting growth alterations. However, the benefit of each step of a working procedure, e.g., the random repositioning of test beakers, cannot be exactly quantified, although this information might be useful to evaluate working procedures. In this paper, a growth model of M. spicatum was developed and used to assess the impact of temperature and light fluctuations within the standardized setup. It was analyzed how important it is to randomly reassign the location of each plant during laboratory tests to keep differences between the relative growth rates of individual plants low. Moreover, two examples are presented on how modeling can give insight into toxicity testing. Results showed that randomly repositioning of individual plants during an experiment can compensate for fluctuations of light and temperature. A method is presented on how models can be used to improve experimental designs and to quantify their benefits by predicting growth responses. 相似文献
We evaluated the in vitro activity of citrus oils against Mycobacterium tuberculosis and other non-tuberculous Mycobacterium species. Citrus essential oils were tested against a variety of Mycobacterium species and strains using the BACTEC radiometric growth system. Cold pressed terpeneless Valencia oil (CPT) was further tested using the Wayne model of in vitro latency. Exposure of M. tuberculosis and M. bovis BCG to 0.025 % cold pressed terpeneless Valencia orange oil (CPT) resulted in a 3-log decrease in viable counts versus corresponding controls. Inhibition of various clinical isolates of the M. avium complex and M. abscessus ranged from 2.5 to 5.2-logs. Some species/strains were completely inhibited in the presence of CPT including one isolate each of the following: the M. avium complex, M. chelonae and M. avium subsp. paratuberculosis. CPT also inhibited the growth of BCG more than 99 % in an in vitro model of latency which mimics anaerobic dormancy thought to occur in vivo. The activity of CPT against drug-resistant strains of the M. avium complex and M. abscessus suggest that the mechanism of action for CPT is different than that of currently available drugs. Inhibition of latently adapted bacilli offers promise for treatment of latent infections of MTB. These results suggest that the antimycobacterial properties of CPT warrant further study to elucidate the specific mechanism of action and clarify the spectrum of activity. 相似文献