首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   684篇
  免费   179篇
安全科学   94篇
废物处理   66篇
环保管理   264篇
基础理论   313篇
污染及防治   66篇
评价与监测   5篇
灾害及防治   55篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   35篇
  2018年   54篇
  2017年   32篇
  2016年   54篇
  2015年   44篇
  2014年   55篇
  2013年   211篇
  2012年   30篇
  2011年   38篇
  2010年   49篇
  2009年   28篇
  2008年   30篇
  2007年   21篇
  2006年   23篇
  2005年   14篇
  2004年   18篇
  2003年   21篇
  2002年   27篇
  2001年   19篇
  2000年   20篇
  1999年   11篇
  1998年   1篇
  1997年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1983年   2篇
  1966年   1篇
排序方式: 共有863条查询结果,搜索用时 234 毫秒
201.
We propose to bridge the domains of positive health and leadership. We suggest that a “positive” health model helps explain highly effective leadership. The leader must strive for health and facilitate health in his/her followers. We look at leadership through this new and positive lens, that of “positive” health promotion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
202.
Abstract: Understanding the risk of extinction of a single population is an important problem in both theoretical and applied ecology. Local extinction risk depends on several factors, including population size, demographic or environmental stochasticity, natural catastrophe, or the loss of genetic diversity. The probability of local extinction may also be higher in low‐quality sink habitats than in high‐quality source habitats. We tested this hypothesis by comparing local extinction rates of 15 species of Odonata (dragonflies and damselflies) between 1930–1975 and 1995–2003 in central Finland. Local extinction rates were higher in low‐quality than in high‐quality habitats. Nevertheless, for the three most common species there were no differences in extinction rates between low‐ and high‐quality habitats. Our results suggest that a good understanding of habitat quality is crucial for the conservation of species in heterogeneous landscapes.  相似文献   
203.
204.
Abstract: The Mediterranean Basin is a global hotspot of biodiversity. Hotspots are said to be experiencing a major loss of habitat, but an added risk could be the decline of some species having a special role in ecological relationships of the system. We reviewed the role of European rabbits (Oryctolagus cuniculus) as a keystone species in the Iberian Peninsula portion of the Mediterranean hotspot. Rabbits conspicuously alter plant species composition and vegetation structure through grazing and seed dispersal, which creates open areas and preserves plant species diversity. Moreover, rabbit latrines have a demonstrable effect on soil fertility and plant growth and provide new feeding resources for many invertebrate species. Rabbit burrows provide nest sites and shelter for vertebrates and invertebrates. In addition, rabbits serve as prey for a number of predators, including the critically endangered Iberian lynx (Lynx pardinus) and Spanish Imperial Eagle (Aquila adalberti). Thus, the Mediterranean ecosystem of the Iberian Peninsula should be termed “the rabbit's ecosystem.” To our knowledge, this is the first empirical support for existence of a multifunctional keystone species in a global hotspot of biodiversity. Rabbit populations have declined drastically on the Iberian Peninsula, with potential cascading effects and serious ecological and economic consequences. From this perspective, rabbit recovery is one of the biggest challenges for conservation of the Mediterranean Basin hotspot.  相似文献   
205.
Stopping declines in biodiversity is critically important, but it is only a first step toward achieving more ambitious conservation goals. The absence of an objective and practical definition of species recovery that is applicable across taxonomic groups leads to inconsistent targets in recovery plans and frustrates reporting and maximization of conservation impact. We devised a framework for comprehensively assessing species recovery and conservation success. We propose a definition of a fully recovered species that emphasizes viability, ecological functionality, and representation; and use counterfactual approaches to quantify degree of recovery. This allowed us to calculate a set of 4 conservation metrics that demonstrate impacts of conservation efforts to date (conservation legacy); identify dependence of a species on conservation actions (conservation dependence); quantify expected gains resulting from conservation action in the medium term (conservation gain); and specify requirements to achieve maximum plausible recovery over the long term (recovery potential). These metrics can incentivize the establishment and achievement of ambitious conservation targets. We illustrate their use by applying the framework to a vertebrate, an invertebrate, and a woody and an herbaceous plant. Our approach is a preliminary framework for an International Union for Conservation of Nature (IUCN) Green List of Species, which was mandated by a resolution of IUCN members in 2012. Although there are several challenges in applying our proposed framework to a wide range of species, we believe its further development, implementation, and integration with the IUCN Red List of Threatened Species will help catalyze a positive and ambitious vision for conservation that will drive sustained conservation action.  相似文献   
206.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   
207.
208.
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian‐Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.  相似文献   
209.
Abstract

Phosphorylation is an indispensable process for energy and signal transduction in biological systems. AlCl3 at 10 nM to 10 uM range activated in‐vitro [γ‐32P)ATP phosphorylation of the brain (tau) T protein in both normal human or E.coli expressed T forms; in the presence of the kinases P34, PKP, and PKC. However, higher concentrations of ALCl3 inhibited the T phosphorylation with P34, PKP, and PKC to a maximum at 1 mM level. AlCl3 at 100 uM to 500 uM range induced non‐enzymatic phosphorylation of T with γ‐ATP, γ‐GTP, and α‐GTP. AlCl3 activated histone phosphorylation by P34 in a similar pattern. The hyperphosphorylation of T by Al3+ was accompanied by molecular shift and mobility retardation in SDS‐PAGE. This may demonstrate the mechanism of the longterm neurological effect of Al3+ in human brain leading to the formation of the neurofibrillary tangles related to Alzeheimer's disease.  相似文献   
210.
The biodegradation of one popular nitramine energetics, ammonium dinitramide (ADN) by mixture of denitrifying bacterial species was investigated. ADN was observed to be effectively mineralized in the anaerobic mixed culture. The initial ADN concentration of 250 mg/L was reduced to non‐detectable levels (> 99% removal efficiency) in 5 days of incubation under anaerobic conditions. Final products generated from anaerobic degradation of nitramine energetics by anaerobic metabolism were NH4 +, CH4, and CO2 that were released to the environment with the denitrifiers’ growth. In addition, it was found that the activity of denitrifiers was inhibited by high concentration of ammonia generated through the degradation reactions of energetic nitrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号