首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3532篇
  免费   202篇
  国内免费   19篇
安全科学   205篇
废物处理   216篇
环保管理   705篇
综合类   301篇
基础理论   859篇
环境理论   5篇
污染及防治   974篇
评价与监测   264篇
社会与环境   148篇
灾害及防治   76篇
  2023年   25篇
  2022年   49篇
  2021年   63篇
  2020年   44篇
  2019年   74篇
  2018年   98篇
  2017年   93篇
  2016年   141篇
  2015年   117篇
  2014年   168篇
  2013年   513篇
  2012年   185篇
  2011年   212篇
  2010年   180篇
  2009年   154篇
  2008年   202篇
  2007年   173篇
  2006年   188篇
  2005年   123篇
  2004年   110篇
  2003年   117篇
  2002年   131篇
  2001年   66篇
  2000年   45篇
  1999年   44篇
  1998年   32篇
  1997年   19篇
  1996年   22篇
  1995年   35篇
  1994年   26篇
  1993年   18篇
  1992年   19篇
  1991年   22篇
  1990年   22篇
  1989年   15篇
  1988年   10篇
  1987年   8篇
  1986年   10篇
  1985年   15篇
  1984年   11篇
  1983年   18篇
  1982年   21篇
  1981年   25篇
  1980年   11篇
  1979年   13篇
  1975年   5篇
  1973年   9篇
  1972年   4篇
  1971年   4篇
  1964年   6篇
排序方式: 共有3753条查询结果,搜索用时 46 毫秒
901.
902.
Concentration and Recovery of Viruses from Water: A Comprehensive Review   总被引:2,自引:0,他引:2  
Enteric viruses are a cause of waterborne disease worldwide, and low numbers in drinking water can present a significant risk of infection. Because the numbers are often quite low, large volumes (100–1,000 L) of water are usually processed. The VIRADEL method using microporous filters is most commonly used today for this purpose. Negatively charged filters require the addition of multivalent salts and acidification of the water sample to effect virus adsorption, which can make large-volume sampling difficult. Positively charged filters require no preconditioning of samples, and are able to concentrate viruses from water over a greater pH range than electronegative filters. The most widely used electropositive filter is the Virosorb 1MDS; however, the Environmental Protection Agency has added the positively charged NanoCeram filters to their proposed Method 1615. Ultrafilters concentrate viruses based on size exclusion rather than electrokinetics, but are impractical for field sampling or processing of turbid water. Elution (recovery) of viruses from filters following concentration is performed with organic (e.g., beef extract) or inorganic solutions (e.g., sodium polyphosphates). Eluates are then reconcentrated to decrease the sample volume to enhance detection methods (e.g., cell culture infectivity assays and molecular detection techniques). While the majority of available filters have demonstrated high virus retention efficiencies, the methods to elute and reconcentrate viruses have met with varying degrees of success due to the biological variability of viruses present in water.  相似文献   
903.
904.
Stopping declines in biodiversity is critically important, but it is only a first step toward achieving more ambitious conservation goals. The absence of an objective and practical definition of species recovery that is applicable across taxonomic groups leads to inconsistent targets in recovery plans and frustrates reporting and maximization of conservation impact. We devised a framework for comprehensively assessing species recovery and conservation success. We propose a definition of a fully recovered species that emphasizes viability, ecological functionality, and representation; and use counterfactual approaches to quantify degree of recovery. This allowed us to calculate a set of 4 conservation metrics that demonstrate impacts of conservation efforts to date (conservation legacy); identify dependence of a species on conservation actions (conservation dependence); quantify expected gains resulting from conservation action in the medium term (conservation gain); and specify requirements to achieve maximum plausible recovery over the long term (recovery potential). These metrics can incentivize the establishment and achievement of ambitious conservation targets. We illustrate their use by applying the framework to a vertebrate, an invertebrate, and a woody and an herbaceous plant. Our approach is a preliminary framework for an International Union for Conservation of Nature (IUCN) Green List of Species, which was mandated by a resolution of IUCN members in 2012. Although there are several challenges in applying our proposed framework to a wide range of species, we believe its further development, implementation, and integration with the IUCN Red List of Threatened Species will help catalyze a positive and ambitious vision for conservation that will drive sustained conservation action.  相似文献   
905.
Clearance and perturbation of Amazonian forests are one of the greatest threats to tropical biodiversity conservation of our times. A better understanding of how soil communities respond to Amazonian deforestation is crucially needed to inform policy interventions that effectively protect biodiversity and the essential ecosystem services it provides. We assessed the impact of deforestation and ecosystem conversion to arable land on Amazonian soil biodiversity through a meta-analysis. We analyzed 274 pairwise comparisons of soil biodiversity in Amazonian primary forests and sites under different stages of deforestation and land-use conversion: disturbed (wildfire and selective logging) and slash-and-burnt forests, pastures, and cropping systems. Overall, 60% and 51% of responses of soil macrofauna and microbial community attributes (i.e., abundance, biomass, richness, and diversity indexes) to deforestation were negative, respectively. We found few studies on mesofauna (e.g., microarthropods) and microfauna (e.g., protozoa and nematodes), so those groups could not be analyzed. Macrofauna abundance and biomass were more vulnerable to the displacement of forests by pastures than by agricultural fields, whereas microbes showed the opposite pattern. Effects of Amazonian deforestation on macrofauna were more detrimental at sites with mean annual precipitation >1900 mm, and higher losses of microbes occurred in highly acidic soils (pH < 4.5). Limited geographic coverage, omission of meso- and microfauna, and low taxonomic resolution were main factors impairing generalizations from the data set. Few studies assessed the impacts of within-forest disturbance (wildfires and selective logging) on soil species in Amazonia, where logging operations rapidly expand across public lands and more frequent severe dry seasons are increasing the prevalence of wildfires.  相似文献   
906.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   
907.
908.
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian‐Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.  相似文献   
909.
ABSTRACT

A portion of a population is assumed to be at risk, with the mortality hazard varying with atmospheric conditions including total suspended particulates (TSP). This at-risk population is not observed and the hazard function is unknown; we wish to estimate these from mortality count and atmospheric variables. Consideration of population dynamics leads to a state-space representation, allowing the Kalman Filter (KF) to be used for estimation. A harvesting effect is thus implied; high mortality is followed by lower mortality until the population is replenished by new arrivals.

The model is applied to daily data for Philadelphia, PA, 1973-1990. The estimated hazard function rises with the level of TSP and at extremes of temperature and also reflects a positive interaction between TSP and temperature. The estimated at-risk population averages about 480 and varies seasonally. We find that lags of TSP are statistically significant, but the presence of negative coefficients suggests their role may be partially statistical rather than biological. In the population dynamics framework, the natural metric for health damage from air pollution is its impact on life expectancy. The range of hazard rates over the sample period is 0.07 to 0.085, corresponding to life expectancies of 14.3 and 11.8 days, respectively.  相似文献   
910.
Geometric representations of two dynamic models of replenishable natural resource harvesting are provided. A well-known simple model is presented in which the only cost of production is the opportunity foregone. That is, present consumption implies a reduction in future consumption possibilities. Diagrams show the iterations of an optimal program. A four-quadrant diagram is used to illustrate a short-run equilibrium and the dynamics that will lead to a long-run solution on the bionomic transformation curve.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号