首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1201篇
  免费   72篇
  国内免费   489篇
安全科学   86篇
废物处理   57篇
环保管理   125篇
综合类   688篇
基础理论   225篇
污染及防治   401篇
评价与监测   70篇
社会与环境   50篇
灾害及防治   60篇
  2024年   3篇
  2023年   27篇
  2022年   80篇
  2021年   58篇
  2020年   58篇
  2019年   48篇
  2018年   54篇
  2017年   73篇
  2016年   53篇
  2015年   60篇
  2014年   90篇
  2013年   118篇
  2012年   100篇
  2011年   127篇
  2010年   83篇
  2009年   82篇
  2008年   76篇
  2007年   67篇
  2006年   78篇
  2005年   56篇
  2004年   38篇
  2003年   27篇
  2002年   47篇
  2001年   36篇
  2000年   43篇
  1999年   35篇
  1998年   18篇
  1997年   25篇
  1996年   15篇
  1995年   17篇
  1994年   11篇
  1993年   20篇
  1992年   10篇
  1991年   10篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1983年   2篇
  1982年   2篇
  1973年   1篇
排序方式: 共有1762条查询结果,搜索用时 296 毫秒
941.
The effects of snow regimes (including the depth and duration of snow cover) on soil N dynamics and microbial activity in situ were explored in the alpine belt of the eastern Tibetan Plateau. Deeper snow-cover reduced NH 4 + -N content, microbial biomass carbon and nitrogen, fungi count, and enzyme activities, whereas did not change net N mineralization. No differences in N pools in the soil, microbial biomass, microbial counts, and enzyme activity were found under the different duration of snow cover, showing that accumulation and release in soil N pools did not be significantly changed by earlier continuous snow cover.  相似文献   
942.
Aerobic biodegradation of decabromodiphenyl ether (PBDE-209) by Pseudomonas aeruginosa under the influence of co-metabolic substrates and heavy metal cadmium ion was studied, The results showed that certain amount of co-metabolic substrates, such as glucose, sucrose, lactose, starch, and beef extract, would promote the biodegradation of PBDE-209, among which glucose most favorably accelerated PBDE-209 degradation by about 36% within 5 d. The highest degradation efficiency was reached at the ratio of PBDE-209 and glucose 1:5 while excessive carbon source would actually hamper the degradation efficiency. Exploration of influences of cadmium ion on PBDE-209 biodegradation indicated that degradation efficiency was stimulated at low concentrations of Cd2+ (0.5–2 mg L−1) while inhibited at higher levels (5–10 mg L−1), inferring that the heavy metals of different concentrations possessed mixed reactions on PBDE-209 bioremoval. Bromine ion was produced during the biotransformation process and its concentration had a good negative correlation with the residues of PBDE-209. Two nonabromodiphenyl ethers (PBDE-208, PBDE-207), four octabromodiphenyl ethers (PBDE-203, PBDE-202, PBDE-197, PBDE-196) and one heptabromodiphenyl ethers (PBDE-183) were formed with the decomposition of PBDE-209, demonstrating that the main aerobic transformation mechanism of PBDE-209 was debromination.  相似文献   
943.
Multi-walled carbon nanotube-filled electrospun nanofibrous membranes (MWCNT-ENFMs) were prepared by electrospinning. The addition of MWCNTs (0.5 wt.% vs. ENFMs) doubled the specific surface area and tensile strength of the ENFMs. The MWCNT-ENFMs were used to adsorb perfluorooctane sulfonate (PFOS) in aqueous solutions. The sorption kinetics results showed that the sorption rate of PFOS onto the MWCNT-ENFMs was much higher than the sorption rate of PFOS onto the pure ENFMs control, and the pseudo-second-order model (PSOM) described the sorption kinetics well. The sorption isotherms indicated that the sorption capacity of the MWCNT-ENFMs for PFOS (16.29 ± 0.26 μmol g−1) increased approximately 18 times, compared with the pure ENFMs (0.92 ± 0.06 μmol g−1). Moreover, the solution pH significantly affected the sorption efficiency and sorption mechanism. The MWCNT-ENFMs were negatively charged from pH 2.0–10.0, but the electrostatic repulsion between the MWCNT-ENFMs and PFOS was overcome by the hydrophobic interactions between PFOS and the MWCNTs or nanofibers. The strong hydrophobic interactions between PFOS and the MWCNTs played a dominant role in the sorption process. For the pure ENFMs, the electrostatic repulsion was conquered by the hydrophobic interactions between PFOS and the nanofibers at pH > 3.1. In addition to the hydrophobic interactions, an electrostatic attraction between PFOS and the pure ENFMs was involved in the sorption process at pH < 3.1.  相似文献   
944.
Fast-growing metal-accumulating woody plants are considered potential candidates for phytoextraction of metals. Shuikoushan mining, one of the biggest Pb and Zn production bases in China, presents an important source of the pollution of environment during the last 100 years. Over 150 km2 of fertile soil have been contaminated by the dust, slag, and tailings from this mining. The goal of the present work has been to determine the content of Pb, Zn, Cd, and Cu in wild woody plants (18 species) naturally growing in this area. Two hundred five plant and soil samples from 11 contaminated sites were collected and analyzed. In addition, to assess the ability of multi-metal accumulation of these trees, we proposed a predictive comprehensive bio-concentration index (CBCI) based on fuzzy synthetic assessment. Our data suggest some adult trees could also accumulate a large amount of metals. Pb concentrations in leaves of Paulownia fortunei (Seem.) Hemsl. (1,179 mg/kg) exceeded the hyperaccumulation threshold (1,000 mg/kg). Elevated Pb concentrations (973.38 mg/kg) were also found in the leaves of Broussonetia papyrifera (L.) Vent., with a Pb bio-concentration factor of up to 0.701. Endemic species, Zenia insignis Chun exhibited huge potential for Zn and Cd phytoextraction, with the highest concentrations of Zn (1,968 mg/kg) and Cd (44.40 mg/kg), characteristic root nodules, and fast growth rates in poor soils. As for multi-metal accumulation ability, native species B. papyrifera was calculated to have the most exceptional ability to accumulate various metals simultaneously (CBCI 2.93), followed by Amorpha fruticosa L. (CBCI 2.72) and Lagerstroemia indica L. (CBCI 2.53). A trend of increasing metal from trunks to leaves (trunks?<?branches?<?leaves) and towards fine roots has been shown by metal partitioning between tissues. The proposed CBCI would allow for the selection of suitable trees for phytoremediation in the future.  相似文献   
945.
Previous studies have not examined the adverse effects of microcystin-LR (MC-LR) at environmental relevant concentrations on the development and functions of nervous system. The neurotoxic effects of MC-LR exposure on neurotransmitter systems were investigated in Caenorhabditis elegans. After exposing L1 larvae to 0.1, 1, 10, and 100 μg?l?1 of MC-LR for 8 and 24 h, the adverse effects on GABAergic, cholinergic, serotonergic, dopaminergic, and glutamatergic neurons were examined. The expression levels of genes required for development and functions of GABAergic neurons were further investigated. Body bend frequency and head thrash frequency decreased significantly after MC-LR exposure for 8 h at concentrations more than 1 μg?l?1 and after MC-LR exposure for 24 h at concentrations more than 0.1 μg?l?1. Loss of GABAergic neurons increased significantly in a dose-dependent manner after MC-LR exposure at concentrations more than 0.1 μg?l?1. In contrast, no obvious neuronal losses or morphologic changes were observed in cholinergic, serotonergic, dopaminergic, and glutamatergic neurons in MC-LR-exposed nematodes. Quantitative real-time PCR assay further showed that expression levels of unc-30, unc-46, unc-47, and exp-1 genes required for development and function of GABAergic neurons decreased significantly in nematodes exposed to MC-LR at concentrations more than 0.1 or 1 μg?l?1. MC-LR at environmental relevant concentrations caused neurobehavioral defects, which may be largely due to the neuronal loss and the alterations of expression level of genes required for GABAergic neurotransmitter system in C. elegans.  相似文献   
946.
Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70–80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40–50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root/shoot ratios, root surface areas, specific root areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the young mulberry trees in the DH were all significantly higher than those of the control group (DM). Leaf water potential, instantaneous water use efficiency, and abscisic acid content of DH were all significantly lower than DM. Under different degrees of drought stress, the growth of mulberry trees will be inhibited, but the trees can respond to the stress by increasing the root absorptive area and enhancing capacity for water retention. Mulberry trees demonstrate strong resistance to drought stress, and furthermore drought resistance can be improved by drought hardening during the seedling stage.  相似文献   
947.
研究了厌氧-缺氧-好氧(A2O)活性污泥工艺对生活污水中天然雌激素雌酮(Estrone,E1)、17β-雌二醇(17β-Estradiol,E2)以及17α-乙炔基雌二醇(17α-Ethynylestradiol,EE2)的去除性能。在对COD、N和P具有良好去除效果的前提下,对E1、E2和EE2的去除率可分别达到92.7%、100%和62.7%。通过对各反应单元内3种雌激素的物料平衡分析,表明A2O工艺对雌激素的去除主要发生在厌氧段和好氧段。以失活污泥作为对照组,好氧硝化过程中雌激素去除的小试实验发现,好氧过程中E1、E2的去除主要依靠生物降解作用,而EE2的去除则主要依赖于活性污泥对其的吸附作用。  相似文献   
948.
实验中采用简青霉对稻草秸秆进行降解作用,通过正交实验的极差、三因素三水平作用趋势图和降解选择性分析,对影响简青霉降解稻草秸秆的3种因素进行了优化,得到培养温度40℃、含水率80%、培养pH为8是降解的最佳固态发酵培养条件。并研究了碱木质素对简青霉分泌木质素降解酶的诱导作用,不同浓度的碱木质素对简青霉产酶的诱导作用不同,且对不同酶的诱导效果也不同,最后得到较低浓度0.5和1 g/L是诱导的适宜浓度。对比较适浓度的碱木质素和常用的诱导剂愈创木酚、吐温80的诱导作用,发现在同样的培养条件下,碱木质素的诱导效果比愈创木酚和吐温80效果都好。  相似文献   
949.
对脱硫失活后的新型催化剂进行水洗再生研究,着重探讨了再生时间、洗涤水温度和喷淋密度对脱硫后的新型催化剂活性恢复能力的影响,并对3种影响因素进行了正交实验研究。结果表明,洗涤水温度、再生时间和喷淋密度是影响催化剂活性恢复的主要因素;在洗涤水温度为60℃、再生时间为30min、喷淋密度为47.9m^3/(m·h)时,催化剂活性恢复的最好;催化剂经过水洗再生后,其比表面积比未再生时的有所增加,说明在脱硫过程中堵塞催化剂活性位的硫酸物种被洗出,催化剂活性位得到了部分恢复。  相似文献   
950.
分别以煤粉和稻杆为还原剂对电镀污泥进行还原焙烧,并通过酸浸回收焙烧渣中的金属。研究了焙烧温度、焙烧时间和还原剂投加量对目标金属Cu浸出率的影响以及主要杂质金属的浸出性,并采用BCR逐级提取法分析了焙烧前后污泥中的金属形态分布。结果表明,当在电镀污泥中投加30%的煤粉在600℃下焙烧1h后Cu的浸出率达到97.78%,当投加50%的稻杆时浸出率为89.47%,而氧化焙烧后浸出率仅为37.71%;并且还原焙烧渣中多数杂质金属的浸出率较低,从而可以实现Cu与杂质金属的初步分离。氧化焙烧容易导致金属从易浸出的非残渣态向难浸出的残渣态转化,而还原焙烧则能抑制这种转化过程,金属形态是决定其浸出性的重要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号