首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   2篇
  国内免费   16篇
安全科学   2篇
废物处理   7篇
环保管理   11篇
综合类   32篇
基础理论   19篇
污染及防治   68篇
评价与监测   18篇
社会与环境   4篇
灾害及防治   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   15篇
  2012年   8篇
  2011年   6篇
  2010年   11篇
  2009年   6篇
  2008年   1篇
  2007年   12篇
  2006年   14篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
  2001年   8篇
  2000年   10篇
  1999年   2篇
  1998年   2篇
  1997年   10篇
  1996年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
111.
A sorbent having a calcium oxide core and a clay shell was prepared and shown to be capable of reusable applications in absorption and desorption processes for carbon dioxide. The novelty of this sorbent is that only calcium carbonate and clay are used for its preparation with water as a binder. A two-step granulation procedure is used to get the core and then another step to coat the shell layer with the clay powder. A repeated wet-and-dry procedure probably makes the core porous yet strong enough to serve as a sorbent. The pellet is then calcined at 1200 degrees C for 2h to reach its final structure. The core-shell pellets have an overall diameter of 4.4mm with average shell thickness of 0.45 mm, crush load of 35 N and attrition index of 0.035 wt%/h. These results indicate that the pellets will probably be capable of withstanding the stress in future applications. Carbon dioxide absorption at or below 300 degrees C showed a maximum weight gain of 38% for our pellets. Finally, desorption in nitrogen at 800 degrees C can restore the pellet to its original state and hence it is ready for re-use as a sorbent.  相似文献   
112.
Estimating the change of porosity in the saturated zone during air sparging   总被引:1,自引:0,他引:1  
Introduction A ir sparging rem oves volatile organic conta- m inants from a saturated zone by com bining volatilization and aerobic biodegradation. A ir is injected below the w ater table through a slotted screen in a sparging w ell, and then rises to the…  相似文献   
113.

Purpose  

This study assessed the potential exposure risks for workers in the workplace exposed to airborne titanium dioxide nanoparticles (TiO2-NPs) and carbon black nanoparticles (CB-NPs). The risk management control strategies were also developed for the NP engineering workplace.  相似文献   
114.
阐述了广州市白云区南溪化工厂开发出的一套国内首创的对线路板蚀刻废液进行大规模集中资源化处理的零排放处理新工艺,这套新工艺采用重力分选的方法将在固相条件下生成的氧化铜分离出来,克服了原有工艺的缺陷,达到了理想的分离效果,使废液中所有的成分能够在较低的处理成本下全部分离回收,完全无三废排出,达到了清洁生产的要求。  相似文献   
115.
116.
ABSTRACT

Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5.

The mean concentration of ambient PM2.5 was 42.6953.68 μj.g/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4 2- (12.8-15.1%), NO3 - (8.110.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4 2- and NO3 -), and outdoor burning of agriculture wastes (13-17%).  相似文献   
117.
ABSTRACT

With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300–14,700 mg/m3 and 240–400 ° C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained.

Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results.

In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   
118.
逆境条件下植物体内产生并累积活性氧从而破坏植物组织结构与功能,同时植物也可以通过改变活性氧代谢相关酶活性清除活性氧而减轻活性氧伤害以适应环境胁迫。为研究铝胁迫下不同耐铝小麦品种(Triticum aestivum L.)在活性氧代谢上的差异及与小麦耐铝性的关系,本试验选用小麦品种ET8(耐铝型)、ES8(铝敏感型)为试验材料研究了不同耐铝小麦品种活性氧代谢变化上的差异。结果表明,50μmol·L-1铝处理24h,ET8和ES8活性氧含量显著升高,O2·ˉ产生速率增幅分别为10.5%和20.4%,H2O2含量增幅分别为3.3%和7.6%。ET8和ES8超氧化物歧化酶(SOD)活性增幅分别为11.9%和41.6%,过氧化物酶(POD)活性增幅为51.8%和77.8%,抗坏血酸过氧化物酶(APX)活性增幅为54.4%和29.1%,过氧化氢酶(CAT)活性增幅为32.9%和38.4%,谷胱甘肽还原酶(GR)活性增幅为83.1%和85.5%。虽然抗氧化酶活性增加后会清除一部分活性氧,但活性氧的累积仍然造成了膜脂的过氧化,ET8和ES8丙二醛(MDA)含量分别增加18.2%和50.0%,质膜透性也随着MDA含量的升高而增加,增幅分别为1.25倍和1.36倍。综上所述,不同耐铝品种间活性氧代谢的差异是小麦品种耐铝性差异显著的原因之一。  相似文献   
119.
Solidification of low-level-radioactive (LLW) resin was optimized using Taguchi analytical methodology. The ingredients in LLW mortar which caused the solidification of cement were evaluated through consecutive measurements of the effects of various concentrations of ingredients. Samples selected according to Taguchi's method were separated into 18 different categories and measured at the 7th, 21st, and 28th day after fabrication on developing effects. Evaluations of the various samples focused on whether the compressive and bending strength fulfilled the special criteria of the Taiwan Power Company (TPC). Similar results indicated that both furnace slag and fly ash were the dominant material resulting from the solidification of LLW mortar. The superior combination was obtained as furnace slag 24 wt.%, fly ash 24 wt.%, and cement 8 wt.% to mix 24 wt.% of resin with 20 wt.% of water, to fulfill the contemporary requirements of TPC.  相似文献   
120.
Biotrickling filtration of nitric oxide   总被引:21,自引:0,他引:21  
A biotrickling filter with blast-furnace slag packings (sizes = 20-40 mm and specific surface area = 120 m2/m3) was utilized to treat NO in an air stream. The operational stability, as well as the effects of gas empty-bed retention time (EBRT) and nutrient addition on the removal ability of NO, were tested. Approximately six weeks were required for the development of a biofilm for NO degradation, and a two-week organic carbon deficiency resulted in the detachment of biofilms from the packing surfaces. A steady removal rate of 80% was attained at specified influent NO concentrations of 892 to 1237 ppm and an EBRT of 118 sec. The effluent NO concentration diminished exponentially with enlarging EBRT, with influent NO concentrations of 203-898 ppm, and EBRTs of 25 to 118 sec. Nutrient addition is essential for efficient removal of the influent NO. Mass ratios of C: P: N = 7: 1: 30 and NaHCO3: NO-N = 6.3 could be used for practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号