首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3093篇
  免费   16篇
  国内免费   23篇
安全科学   70篇
废物处理   116篇
环保管理   217篇
综合类   853篇
基础理论   581篇
环境理论   10篇
污染及防治   975篇
评价与监测   171篇
社会与环境   135篇
灾害及防治   4篇
  2022年   30篇
  2021年   37篇
  2020年   26篇
  2019年   30篇
  2018年   68篇
  2017年   76篇
  2016年   101篇
  2015年   71篇
  2014年   92篇
  2013年   205篇
  2012年   102篇
  2011年   172篇
  2010年   121篇
  2009年   122篇
  2008年   166篇
  2007年   159篇
  2006年   131篇
  2005年   103篇
  2004年   77篇
  2003年   81篇
  2002年   69篇
  2001年   70篇
  2000年   47篇
  1999年   37篇
  1998年   27篇
  1997年   31篇
  1996年   23篇
  1995年   33篇
  1994年   46篇
  1993年   25篇
  1992年   17篇
  1991年   23篇
  1984年   14篇
  1981年   19篇
  1974年   14篇
  1972年   14篇
  1969年   14篇
  1967年   18篇
  1966年   23篇
  1965年   36篇
  1964年   19篇
  1963年   29篇
  1962年   30篇
  1961年   40篇
  1960年   22篇
  1959年   22篇
  1958年   16篇
  1957年   27篇
  1956年   19篇
  1955年   18篇
排序方式: 共有3132条查询结果,搜索用时 15 毫秒
161.
162.
If organic matter is burnt, the combustion of wood produces the highest amounts of polycyclic aromatic hydrocarbons (PAHs) compared with other fossil energy sources such as oil, coal, or gas. Emissions from wood combustion are increasingly of special interest due to the rising use of wood as a renewable energy source in residential heating in Europe. To the authors' knowledge, reproducible wood-specific PAH patterns in soot were identified for the first time by use of a sampling interval of only 5 min in this study. The short sampling interval was enabled by the very sensitive analytical method of gas chromatography–atmospheric pressure laser ionization–mass spectrometry (GC-APLI-MS) applied. The analysis of 40 PAH of soot from wood logs of spruce, pine, larch (softwood) and beech, birch, oak (hardwood), and wood pellets, as well as wood briquettes, showed 13.46–250.62 mg/kg for ∑40 PAH and 10.75–177.94 mg/kg for the U.S. Environmental Protection Agency PAH standard (without acenaphthylene and anthracene). Highest concentrations occurred in the samples from birch with bark, beech, and wood briquettes. Indeno[1,2,3-cd]pyrene, naphthalene, and alkylated naphthalenes were also detected. Significant concentrations of the very toxic dibenzopyrenes (up to 11.30 mg/kg) are reported. Softwood soot contained highest amounts of 2–4-ring PAH, followed by hardwood which is in accordance with the presence of highest amounts of abietic acid in softwood, a known precursor of retene and phenanthrene. PAH in soot from five spruce samples from different locations show a mean ∑40 PAH concentration of 13.46 mg/kg (n = 5, minimum 8.03, maximum 23.32 mg/kg, SD = 5.65) and exhibited a typical pattern that differed from all other wood soot samples. The distributions of alkylated naphthalenes of the spruce samples show a bell-shape distribution in contrast to the alkylated phenanthrenes/anthracenes of all samples (except the wood pellets), showing a slope distribution. The data indicate that wood-specific PAH patterns exist and under the applied conditions, spruce logs produced the least toxic soot.  相似文献   
163.
Climate change is altering nutrient cycling within the Arctic Ocean, having knock-on effects to Arctic ecosystems. Primary production in the Arctic is principally nitrogen-limited, particularly in the western Pacific-dominated regions where denitrification exacerbates nitrogen loss. The nutrient status of the eastern Eurasian Arctic remains under debate. In the Barents Sea, primary production has increased by 88% since 1998. To support this rapid increase in productivity, either the standing stock of nutrients has been depleted, or the external nutrient supply has increased. Atlantic water inflow, enhanced mixing, benthic nitrogen cycling, and land–ocean interaction have the potential to alter the nutrient supply through addition, dilution or removal. Here we use new datasets from the Changing Arctic Ocean program alongside historical datasets to assess how nitrate and phosphate concentrations may be changing in response to these processes. We highlight how nutrient dynamics may continue to change, why this is important for regional and international policy-making and suggest relevant research priorities for the future.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01673-0.  相似文献   
164.
Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air–sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01658-z.  相似文献   
165.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
166.
A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxins and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment.  相似文献   
167.
Influence of soil properties and aging on Cu partitioning and toxicity was assessed on 10 artificial soils constituted using a statistical design considering pH (5.5 and 7.5), organic matter (1-30% [w/w]), and clay content (5-35% [w/w]). Total Cu as well as water-, CaCl2-, and diethylene triamine pentaacetic acid (DTPA)-extracted Cu fractions were determined for each soil mixture. Ecotoxic effect was assessed by determining growth inhibition of barley (Hordeum vulgare L.) and compost worm (Eisenia fetida) mortality. Analyses were repeated after a 16-wk aging period of the soils at pH 7.5 (8 x 2-wk wetting and drying cycle). Results indicated that pH was the main factor controlling Cu partitioning, ahead of organic matter and clay content. Calcium chloride (0.5 M)-extracted Cu fractions showed the best correlation with toxic responses (r = 0.55-0.66; p < 0.05), while total and DTPA-extracted Cu concentrations could not explain differences in toxicity. Direct regressions between toxicity and soil properties (pH, organic matter, and clay content) provided better explanation of variance: r2= 0.50 (p = 0.00006) for compost worm mortality, r2= 0.77 (p < 0.00001) for barley shoot inhibition, and r2= 0.92 (p < 0.00001) for barley root inhibition. Copper toxicity was mainly influenced by pH and, to a lesser extent, by organic matter and clay content. Aging in organic soils revealed a slight reduction in ecotoxicity while an increase was observed in soils with low organic matter content. Further investigation using longer aging periods would be necessary to assess the significance of this observation.  相似文献   
168.
In mine water pollution abatement, it is commonly assumed that known mine waste sites are the major pollution sources, thus neglecting the possibility of significant contribution from other old and diffuse sources within a catchment. We investigate the influence of different types of pollution source uncertainty on cost-effective allocation of abatement measures for mine water pollution. A catchment-scale cost-minimization model is developed and applied to the catchment of the river Dalälven, Sweden, in order to exemplify important effects of such source uncertainty. Results indicate that, if the pollution distribution between point and diffuse sources is partly unknown, downstream abatement measures, such as constructed wetlands, at given compliance boundaries are often cost-effective. If downstream abatement measures are not practically feasible, the pollution source distribution between point and diffuse mine water sources is critical for cost-effective solutions to abatement measure allocation in catchments. In contrast, cost-effective solutions are relatively insensitive to uncertainty in total pollutant discharge from mine water sources.  相似文献   
169.
Lidström  Susanna  Sörlin  Sverker  Svedäng  Henrik 《Ambio》2020,49(5):1114-1121
Ambio - Before the mid-twentieth century, there was no comprehensive narrative about empirical conditions in Swedish seas. Around 1970, this view changed profoundly. In line with growing research...  相似文献   
170.
Pan  Haozhi  Page  Jessica  Zhang  Le  Cong  Cong  Ferreira  Carla  Jonsson  Elisie  Näsström  Helena  Destouni  Georgia  Deal  Brian  Kalantari  Zahra 《Ambio》2020,49(7):1313-1327

Human-induced urban growth and sprawl have implications for greenhouse gas (GHG) emissions that may not be included in conventional GHG accounting methods. Improved understanding of this issue requires use of interactive, spatial-explicit social–ecological systems modeling. This paper develops a comprehensive approach to modeling GHG emissions from urban developments, considering Stockholm County, Sweden as a case study. GHG projections to 2040 with a social–ecological system model yield overall greater emissions than simple extrapolations in official climate action planning. The most pronounced difference in emissions (39% higher) from energy use single-residence buildings resulting from urban sprawl. And this difference is not accounted for in the simple extrapolations. Scenario results indicate that a zoning policy, restricting urban development in certain areas, can mitigate 72% of the total emission effects of the model-projected urban sprawl. The study outcomes include a decision support interface for communicating results and policy implications with policymakers.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号