首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3093篇
  免费   16篇
  国内免费   23篇
安全科学   70篇
废物处理   116篇
环保管理   217篇
综合类   853篇
基础理论   581篇
环境理论   10篇
污染及防治   975篇
评价与监测   171篇
社会与环境   135篇
灾害及防治   4篇
  2022年   30篇
  2021年   37篇
  2020年   26篇
  2019年   30篇
  2018年   68篇
  2017年   76篇
  2016年   101篇
  2015年   71篇
  2014年   92篇
  2013年   205篇
  2012年   102篇
  2011年   172篇
  2010年   121篇
  2009年   122篇
  2008年   166篇
  2007年   159篇
  2006年   131篇
  2005年   103篇
  2004年   77篇
  2003年   81篇
  2002年   69篇
  2001年   70篇
  2000年   47篇
  1999年   37篇
  1998年   27篇
  1997年   31篇
  1996年   23篇
  1995年   33篇
  1994年   46篇
  1993年   25篇
  1992年   17篇
  1991年   23篇
  1984年   14篇
  1981年   19篇
  1974年   14篇
  1972年   14篇
  1969年   14篇
  1967年   18篇
  1966年   23篇
  1965年   36篇
  1964年   19篇
  1963年   29篇
  1962年   30篇
  1961年   40篇
  1960年   22篇
  1959年   22篇
  1958年   16篇
  1957年   27篇
  1956年   19篇
  1955年   18篇
排序方式: 共有3132条查询结果,搜索用时 15 毫秒
971.

Phosphorus (P) recovery and recycling play a crucial role in improving resource efficiency, sustainable nutrient management and moving toward circular economy. Increasing demand for fertilizers, signs of geopolitical constraints, and high discharge of P to waterbodies are the other reasons to pursue the circularity of P. Various research have been carrying out and several processes have been developed for P-recovery from different resources. However, there is still a huge unexplored potential for P-recovery specially in the regional framework from the four main P-rich waste resources: food waste, manure, mining waste, and sewage sludge. This study reviews recovery methods of P from these secondary resources comprehensively. Additionally, it analyzes the Nordic viewpoint of P-cycle by evaluating Nordic reserves, demands, and secondary resources to gain a systematic assessment of how Nordic countries could move toward circular economy of P. Results of this study show that secondary resources of P in Nordic countries have the potential of replacing mineral fertilizer in these countries to a considerable extent. However, to overcome the challenges of P-recovery from studied resources, policymakers and researchers need to take decisions and make innovation along each other to open the new possibilities for Nordic economy.

  相似文献   
972.
The Arctic marine ecosystem is shaped by the seasonality of the solar cycle, spanning from 24-h light at the sea surface in summer to 24-h darkness in winter. The amount of light available for under-ice ecosystems is the result of different physical and biological processes that affect its path through atmosphere, snow, sea ice and water. In this article, we review the present state of knowledge of the abiotic (clouds, sea ice, snow, suspended matter) and biotic (sea ice algae and phytoplankton) controls on the underwater light field. We focus on how the available light affects the seasonal cycle of primary production (sympagic and pelagic) and discuss the sensitivity of ecosystems to changes in the light field based on model simulations. Lastly, we discuss predicted future changes in under-ice light as a consequence of climate change and their potential ecological implications, with the aim of providing a guide for future research.  相似文献   
973.
For characterisation of landscapes in north-eastern Estoniaaffected by alkaline oil shale fly ash and cement dust the zonation-method based on average annual (C y) and short-termconcentrations of pollutants in the air was used, as well as on deposition loads of dust and Ca2+. In the overground layer of atmosphere the zones with different air pollution loads were distinguished. A comparative analysis of pollution zones characteristics and biomonitoring data revealed that for sensitive lichen the dangerous level of alkaline dust in the air, introducingthe degradation of Sphagnum sp. at the level of C y of dust 10–20 g m-3 and at 0.5–1 hr maximums 100–150 g m-3. For Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) this limited concentration (decline of growth parameters) of cement dust is correspondingly following: 30–50 g m-3 and 150–500 g m-3, in case of fly ash the limit level of C y amounting 100 g m-3. Daily deposition load of Ca2+ should not exceed approximately 4.5–15 mg m-2 for lichen; for conifers the harmful pollution load is higher – >22 mg m-2.  相似文献   
974.
Concentrations of NO2, NO, and O3 from a rooftop monitoring station in Gothenburg, Sweden (2002–2006) were analysed to characterise NO2 pollution. [NO2] was shown to correlate strongly and non-linearly with [NO x ] (NO x ?=?NO?+?NO2), in line with observations in other cities. The [NO2] to [NO x ] fraction fell initially with increasing [NO x ]. At [NO x ] levels >200 ppb, the decline in [NO2]/[NO x ] with increasing [NO x ] levelled out and [NO2]/[NO x ] converged towards approximately 0.15–0.16, independent of [NO x ]. Data from a traffic route site showed the same pattern. This value of [NO2]/[NO x ] at high [NO x ] can be interpreted as the NO2 fraction of the NO x emissions from vehicle exhaust. Situations with high NO x pollution and minimum [NO2]/[NO x ] were always associated with [O3] close to zero. Plotting [Ox] (Ox?=?NO2?+?O3) vs. [NO x ] provided a strong linear correlation for situations dominated by local pollution ([NO]/[NO2]>1). The slope of the regression, a measure of the primary NO2 fraction in NO x emissions, was 0.13 during the day and 0.14 during the night. With stronger winds, the rooftop monitoring station became more similar, in terms of NO2 pollution, to a city street site and a traffic route site, although [NO2] was almost always higher at the street/traffic route locations. The EU standard for the annual average of [NO2] (40 μg m?3) was exceeded, while the hourly standard (200 μg m?3, not to be exceeded more than 18 times per year by 2010) was not exceeded at any of the sites.  相似文献   
975.
976.
Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, ∼40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only ∼10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides.  相似文献   
977.
Exposure and flux-based indices of O3 risk were compared, at 19 forest locations across Bavaria in southern Germany from 2002 to 2005; leaf symptoms on mature beech trees found at these locations were also examined for O3 injury. O3 flux modelling was performed using continuously recorded O3 concentrations in combination with meteorological and soil moisture data collected from Level II forest sites. O3 measurements at nearby rural open-field sites proved appropriate as surrogates in cases where O3 data were lacking at forest sites (with altitude-dependent average differences of about 10% between O3 concentrations). Operational thresholds of biomass loss for both O3 indices were exceeded at the majority of the forest locations, suggesting similar risk under long-term average climate conditions. However, exposure-based indices estimated higher O3 risk during dry years as compared to the flux-based approach. In comparison, minor O3-like leaf injury symptoms were detected only at a few of the forest sites investigated. Relationships between flux-based risk thresholds and tree response need to be established for mature forest stands for validation of predicted growth reductions under the prevailing O3 regimes.  相似文献   
978.
979.

Background, aim, and scope

Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated.

Approach

We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries.
  • Have climate change and land-use change increased erosion and sediment loads in rivers?
  • Do we have indications of an increase in riverbed clogging?
  • Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging?
  • Results

    Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish.

    Discussion

    Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades.

    Conclusions

    Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor.

    Recommendations and perspectives

    Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.  相似文献   
    980.
    Background, aim and scope  Nonylphenol (NP) can be detected in the aquatic environment all over the world. It is applied as a technical mixture of isomers of which 353-NP is the most relevant both in terms of abundance (about 20% of total mass) and endocrine potential. 353-NP is metabolised in sewage sludge. The aims of the present study were to determine and to compare the acute toxicity of t-NP, 353-NP and its metabolites as well as to discuss if the toxicity of 353-NP changes during degradation. Materials and methods  353-NP and two of its metabolites were synthesised. The zebrafish embryo test was performed according to standard protocols. Several lethal and non-lethal endpoints during embryonal development were reported. NOEL, LOEL and EC50 were calculated. Results  All tested compounds caused lethal as well as non-lethal malformations during embryo development. 353-NP showed a higher toxicity (EC50 for lethal endpoints 6.7 mg/L) compared to its metabolites 4-(3.5-dimethyl-3-heptyl)-2-nitrophenol (EC50 13.3 mg/L) and 4-(3,5-dimethyl-3-heptyl)-2-bromophenol (EC50 27.1 mg/L). Discussion  In surface water, concentrations of NP are far below the NOEC identified by the zebrafish embryo test. However, in soils and sewage sludge, concentrations may reach or even exceed these concentrations. Therefore, sludge-treated sites close to surface waters should be analysed for NP and its metabolites in order to detect an unduly high contamination due to runoff events. Conclusions  The results of the present study point out that the toxicity of 353-NP probably declines during metabolisation in water, sediment and soil, but does not vanish since the major metabolites exhibit a clear toxic potential for zebrafish embryos. Recommendations and perspectives  Metabolites of environmental pollutants should be included in the ecotoxicological test strategy for a proper risk assessment. An erratum to this article can be found at  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号