首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3093篇
  免费   16篇
  国内免费   23篇
安全科学   70篇
废物处理   116篇
环保管理   217篇
综合类   853篇
基础理论   581篇
环境理论   10篇
污染及防治   975篇
评价与监测   171篇
社会与环境   135篇
灾害及防治   4篇
  2022年   30篇
  2021年   37篇
  2020年   26篇
  2019年   30篇
  2018年   68篇
  2017年   76篇
  2016年   101篇
  2015年   71篇
  2014年   92篇
  2013年   205篇
  2012年   102篇
  2011年   172篇
  2010年   121篇
  2009年   122篇
  2008年   166篇
  2007年   159篇
  2006年   131篇
  2005年   103篇
  2004年   77篇
  2003年   81篇
  2002年   69篇
  2001年   70篇
  2000年   47篇
  1999年   37篇
  1998年   27篇
  1997年   31篇
  1996年   23篇
  1995年   33篇
  1994年   46篇
  1993年   25篇
  1992年   17篇
  1991年   23篇
  1984年   14篇
  1981年   19篇
  1974年   14篇
  1972年   14篇
  1969年   14篇
  1967年   18篇
  1966年   23篇
  1965年   36篇
  1964年   19篇
  1963年   29篇
  1962年   30篇
  1961年   40篇
  1960年   22篇
  1959年   22篇
  1958年   16篇
  1957年   27篇
  1956年   19篇
  1955年   18篇
排序方式: 共有3132条查询结果,搜索用时 31 毫秒
981.
This study investigates the influence of knowledge on opinions about climate change in the emerging adults’ age group (16–17 years). Furthermore, the effects of a lecture in climate change science on knowledge and opinions were assessed. A survey was conducted in Austria and Denmark on 188 students in national and international schools before and after a lecture in climate change science. The results show that knowledge about climate change science significantly affects opinions about climate change. Students with a higher number of correct answers are more likely to have the opinion that humans are causing climate change and that both individuals and governments are responsible for addressing climate change. The lecture in climate change science significantly improved knowledge development but did not affect opinions. Knowledge was improved by 11 % after the lecture. However, the percentage of correct answers was still below 60 % indicating an urgent need for improving climate change science education.  相似文献   
982.
Sediment reworking due to burrowing and feeding was studied in the spatangoid Brissopsis lyrifera, at two different temperatures (7°C and 13°C). Spine activity and burrowing behaviour were recorded with a real-time video camera. Reworked sediment volume was calculated from tracks produced by the heart urchin. Ingestion rates were measured by feeding the heart urchins with luminophores. Temperature had a significant effect on the bioturbation activity of B. lyrifera. At 13°C reworked sediment volume due to burrowing was 22 ml sediment h-1 and at 7°C 14 ml sediment h-1. The ingested amount of sediment was 0.08 and 0.02 g dry sediment h-1 in 13 and 7°C, respectively. Reworked sediment volume due to burrowing was 60-150 times higher than the volume ingested. The large reworked volume is a consequence of B. lyrifera moving with a rocking motion through the sediment. The spines were continuously transporting sediment around the test with 5-min metachronal wave cycles.  相似文献   
983.
Saccopteryx bilineata has a polygynous mating system in which males defend females in a harem territory. Harem defense and courtship include energetically costly flight maneuvers and hovering displays. We tested if (1) harem males have a greater field metabolic rate than non-harem males or females and if (2) the field metabolic rate of harem males is correlated with the number of females in a harem territory. We measured the energy budget in 32 S. bilineata with the doubly labeled water method and compared these estimates with behavioral observations in the daytime roost. Among adult bats, field metabolic rate varied with body mass by an exponent of approximately two. We found no significant difference in field metabolic rate or mass-specific field metabolic rate between harem and non-harem males. The mass-specific field metabolic rate of harem-males increased with harem size. The latter finding supports the hypothesis that the energy costs of courtship display and territorial defense influence the energy budget of harem males. Overall, field metabolic rates of S. bilineata were lower than those of similarly sized bats of the temperate zone and only 2.3 times above the basal metabolic rate recorded for this species. We suggest that male S. bilineata did not take advantage of their metabolic capacity because a prudent allocation of energy to activities of harem maintenance is an adaptive strategy for males in this mating system.  相似文献   
984.

Background, Aim and Scope

Metal ions generally share the ability/tendency of interacting with biological material by forming complexes, except possibly for the heavy alkali metals K, Rb and Cs. This is unrelated to the metals being either essential for sustaining life and its reproduction, apparently insignificant for biology, although perhaps undergoing bioconcentration or even being outright toxic, even at low admission levels. Yet, those different kinds of metal-biomass interactions should in some way depend on properties describing coordination chemistries of these very metals. Nevertheless, both ubiquitously essential metals and others sometimes used in biology should share these properties in numeric terms, since it can be anticipated that they will be distinguished from nonessential and/or toxic ones. These features noted above include bioconcentration, the involvement of metal ions such as Zn, Mg, Cu, Fe, etc. in biocatalysis as crucial components of metalloenzymes and the introduction of a certain set of essential metals common to (almost) all living beings (K, Mg, Mo, Mn, Fe, Cu and Zn), which occurred probably very early in biological evolution by ‘natural selection of the chemical elements’ (more exactly speaking, of the metallomes).

Materials and Methods

The approach is semiempirical and consists of three consecutive steps: 1) derivation of a regression equation which links complex stability data of different complexes containing the same metal ion to electrochemical data pertinent to the (replaced) ligands, thus describing properties of metal ions in complexes, 2) a graphical representation of the properties-two typical numbers c and x for each metal ion-in some map across the c/x-space, which additionally contains information about biological functions of these metal ions, i.e. whether they are essential in general (e.g. Mg, Mn, Zn) or, for a few organisms of various kinds (e.g. Cd, V), not essential (e.g. rare earth element ions) or even generally highly toxic (Hg, U). It is hypothesized that, if coordination properties of metals control their biological ‘feasibility’ in some way, this should show up in the mappings (one each for mono and bidentate-bonding ligands). 3) eventually, the regression equation produced in step 1) is inverted to calculate complex stabilities pertinent to biological systems: 3a) complex stabilities are mapped for ligands delivered to soil (-water) by green plants (e.g. citrate, malate) and fungi and, compared to their unlike selectivities and demands of metal use (photosynthesis taking place or not), 3b) the evolution of the metallome during late chemical evolution is reconstructed.

Results

These maps show some ‘window of essentiality’, a small, contrived range/area of c and x parameters in which essential metal ions gather almost exclusively. c and x thus control the possibility of a metal ion becoming essential by their influencing details of metal-substrate or (in cases of catalytic activities) metal-product interactions. Exceptions are not known to be involved in biocatalysis anyhow.

Discussion

Effects of ligands secreted, e.g. from tree roots or agaric mycelia to the soil on the respective modes (selectivities) of metal bioconcentration can be calculated by the equation giving complex stability constants, with obvious ramifications for a thorough, systematic interpretation of biomonitoring data. Eventually, alterations of C, N and P-compounds during chemical evolution are investigated — which converted CH4 or CO2, N2 and other non-ligands to amino acids, etc., for example, with the latter behaving as efficient chelating ligands: Did they cause metal ions to accumulate in what was going to become biological matter and was there a selectivity, a positive bias in favour of nowessential metals (see above) in this process? Though there was no complete selectivity of this kind, neither a RNA world in which early ribozymes effected most of biocatalysis, nor a paleoatmosphere containing substantial amounts of CO could have paved the way to the present biochemistry and metallomes.

Conclusions

This way of reasoning provides a causal account for abundance distributions described earlier in the Biological System of Elements (BSE; Markert 1994, Fränzle &; Markert 2000, 2002). There is a pronounced change from chemical evolution, where but few transformations depended on metal ion catalysis to biology.

Recommendations and Perspectives

The application of this numerical approach can be used for modified, weighted evaluation of biomonitoring analytical data, likewise for the prediction of bioconcentration hazards due to a manifold of metal ions, including organometallic ones. This is relevant in ecotoxicology and biomonitoring. In combining apoproteins or peptides synthesized from scratch for purposes of catalysing certain transformations, the map and numerical approaches might prove useful for the selection of central ions which are even more efficient than the ‘natural’ ones, like for Co2+ in many Zn enzymes.
  相似文献   
985.
Kelp may be useful as a bioindicator because they are primary producers that are eaten by higher trophic level organisms, including people and livestock. Often when kelp or other algae species are used as bioindicators, the whole organism is homogenized. However, some kelp can be over 25 m long from their holdfast to the tip of the blade, making it important to understand how contaminant levels vary throughout the plant. We compared the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in five different parts of the kelp Alaria nana to examine the variability of metal distribution. To be useful as a bioindicator, it is critical to know whether levels are constant throughout the kelp, or which part is the highest accumulator. Kelp were collected on Adak Island in the Aleutian Chain of Alaska from the Adak Harbor and Clam Cove, which opens onto the Bering Sea. In addition to determining if the levels differ in different parts of the kelp, we wanted to determine whether there were locational or size-related differences. Regression models indicated that between 14% and 43% of the variation in the levels of arsenic, cadmium, chromium, manganese, mercury, and selenium was explained by total length, part of the plant, and location (but not for lead). The main contributors to variability were length (for arsenic and selenium), location (mercury), and part of the plant (for arsenic, cadmium, chromium and manganese). The higher levels of selenium occurred at Clam Cove, while mercury was higher at the harbor. Where there was a significant difference among parts, the holdfast had the highest levels, although the differences were not great. These data indicate that consistency should be applied in selecting the part of kelp (and the length) to be used as a bioindicator. While any part of Alaria could be collected for some metals, for arsenic, cadmium, chromium, and manganese a conversion should be made among parts. In the Aleutians the holdfast can be perennial while the blade, whipped to pieces by winter wave action, is regrown each year. Thus the holdfast may be used for longer-term exposure for arsenic, cadmium, chromium and manganese, while the blade can be used for short-term exposure for all metals. Cadmium, lead and selenium were at levels that suggest that predators, including people, may be at risk from consuming Alaria. More attention should be devoted to heavy metal levels in kelp and other algae from Adak, particularly where they may play a role in a subsistence diets.  相似文献   
986.
The degradation of monochlorobenzene (MCB) was assessed in a constructed wetland treating MCB contaminated groundwater using a detailed geochemical characterisation, stable isotope composition analysis and in situ microcosm experiments. A correlation between ferrous iron mobilisation, decreasing MCB concentration and enrichment in carbon isotope composition was visible at increasing distance from the inflow point, indicating biodegradation of MCB in the wetland. Additionally, in situ microcosm systems loaded with 13C-labelled MCB were deployed for the first time in sediments to investigate the biotransformation of MCB. Incorporation of 13C-labelled carbon derived from the MCB into bacterial fatty acids substantiated in situ degradation of MCB. The detection of 13C-labelled benzene indicated reductive dehalogenation of MCB. This integrated approach indicated the natural attenuation of the MCB in a wetland system. Further investigations are required to document and optimise the in situ biodegradation of MCB in constructed and natural wetland systems treating contaminated groundwater.  相似文献   
987.
We are happy and proud to announce that our book ‘Atmospheric Degradation of Organic Substances — Data for Persistence and Long-range Transport’ (see pp. 143–144) has recently been published by Wiley-VCH [1]. It contains a critical compilation of photo degradation rate constants and quantum efficiencies relevant for calculating the atmospheric persistence of volatile and a few semi-volatile organic compounds. In addition to the data of nearly 1100 substances, the importance of persistence in air and long-range transport potential is presented in two chapters from the point of view of chemicals legislation and of atmospheric photochemistry.  相似文献   
988.
Fine particles (PM2.5) were sampled indoors and outdoors at 40 sampling sites; in ten classrooms in five schools, at ten preschools and 20 non-smoking homes, in three communities in Stockholm, Sweden, during nine 2-week periods. Each sampling site was sampled twice, once during winter and once during spring. The samples were analysed for elemental concentrations using X-ray fluorescence (XRF) spectroscopy. In all locations significantly higher outdoor concentrations were found for elements that are related to long-range transported air masses (S, Ni, Br and Pb), while only Ti was higher indoors in all locations. Similar differences for S, Br and Pb were found in both seasons for homes and schools. In preschools different seasonal patterns were seen for the long-range transported elements S, Br and Pb and the crustal elements Ti, Mn and Fe. The indoor/outdoor ratios for S and Pb suggest an outdoor PM2.5 particle net infiltration of about 0.6 in these buildings. The community located 25 km from the city centre had significantly lower outdoor concentrations of elements of crustal or traffic origin compared with the two central communities, but had similar levels of long-range transported elements. Significant correlations were found between PM2.5 and most elements outdoors (rs = 0.45-0.90). Copper levels were found to correlate well (rs = 0.64-0.91) to the traffic marker NO2 during both winter and spring in all locations. Copper may be a suitable elemental marker for traffic-related aerosols in health studies in areas without other significant outdoor Cu sources.  相似文献   
989.
Metals have been central to the development of human civilisation from the Bronze Age to modern times, although in the past, metal mining and smelting have been the cause of serious environmental pollution with the potential to harm human health. Despite problems from artisanal mining in some developing countries, modern mining to Western standards now uses the best available mining technology combined with environmental monitoring, mitigation and remediation measures to limit emissions to the environment. This paper develops risk screening and prioritisation methods previously used for contaminated land on military and civilian sites and engineering systems for the analysis and prioritisation of chemical risks from modern metal mining operations. It uses hierarchical holographic modelling and multi-criteria decision making to analyse and prioritise the risks from potentially hazardous inorganic chemical substances released by mining operations. A case study of an active platinum group metals mine in South Africa is used to demonstrate the potential of the method. This risk-based methodology for identifying, filtering and ranking mining-related environmental and human health risks can be used to identify exposure media of greatest concern to inform risk management. It also provides a practical decision-making tool for mine acquisition and helps to communicate risk to all members of mining operation teams.  相似文献   
990.
Chloroform is one of the most frequently found anthropogenic groundwater contaminants. Recent investigations, however, suggested that chloroform in groundwater may also originate from a natural production in soils. As societies response to the occurrence of chloroform in groundwater may depend upon its origin as anthropogenic or naturally produced, test methods are needed to measure the potential of natural soil chloroform production. Field measurements of ambient air and soil air, and field and laboratory incubation studies were evaluated for measurement of relative soil chloroform production at a site with four different vegetation types (spruce forest, beech forest, grassland, and grain field) on comparable geological soil. All test methods showed varying soil production of chloroform with spruce forest soil being most productive and grain field soil being least productive. Field measurements of the ratio of soil air to ambient air chloroform concentrations exhibited the smallest difference between high production and low production areas, whereas laboratory incubation studies showed the largest difference. Thus, laboratory incubation studies are suggested as most efficient for estimating relative chloroform production in soil. The study indicated that soil samples should be tested not more than 14 days after sampling. Furthermore, it was found that potentially limiting compounds, such as chloride or nitrate, are not needed to be added in spike experiments to obtain reliable production results. However, it should be recognized that the processes of soil chloroform production are not known yet in all details. Other factors than those studied here may affect the test methods for soil chloroform production too.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号