首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   8篇
  国内免费   18篇
安全科学   28篇
废物处理   54篇
环保管理   98篇
综合类   151篇
基础理论   208篇
环境理论   2篇
污染及防治   314篇
评价与监测   58篇
社会与环境   64篇
灾害及防治   2篇
  2023年   3篇
  2022年   15篇
  2021年   17篇
  2020年   9篇
  2019年   9篇
  2018年   30篇
  2017年   36篇
  2016年   36篇
  2015年   31篇
  2014年   30篇
  2013年   94篇
  2012年   49篇
  2011年   74篇
  2010年   58篇
  2009年   58篇
  2008年   66篇
  2007年   54篇
  2006年   53篇
  2005年   34篇
  2004年   33篇
  2003年   36篇
  2002年   21篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   8篇
  1997年   9篇
  1996年   4篇
  1995年   13篇
  1994年   2篇
  1993年   4篇
  1991年   5篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1981年   3篇
  1965年   7篇
  1964年   3篇
  1963年   4篇
  1962年   9篇
  1961年   11篇
  1958年   2篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
  1947年   1篇
  1942年   1篇
  1941年   2篇
  1938年   1篇
  1932年   1篇
排序方式: 共有979条查询结果,搜索用时 15 毫秒
91.
Examination of model predictions at different horizontal grid resolutions   总被引:1,自引:0,他引:1  
While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs and data requirements increase significantly with increasing grid resolution. Therefore, it is important to examine, for any given application, whether the expected benefit of increased grid resolution justifies the extra costs. In this study, we examine temperature and ozone observations and model predictions for three high ozone episodes that occurred over the northeastern United States during the summer of 1995. In the first set of simulations, the meteorological model RAMS4a was run with three two-way nested grids of 108/36/12 km grid spacing covering the United States and the photochemical model UAM-V was run with two grids of 36/12 km grid spacing covering the eastern United States. In the second set of simulations, RAMS4a was run with four two-way nested grids of 108/36/12/4 km grid spacing and UAM-V was run with three grids of 36/12/4 km grid spacing with the finest resolution covering the northeastern United States. Our analysis focuses on the comparison of model predictions for the finest grid domain of the simulations, namely, the region overlapping the 12 km and 4 km domains. A comparison of 12 km versus 4 km fields shows that the increased grid resolution leads to finer texture in the model predictions; however, comparisons of model predictions with observations do not reveal the expected improvement in the predictions. While high-resolution modeling has scientific merit and potential uses, the currently available monitoring networks, in conjunction with the scarceness of highly resolved spatial input data and the limitations of model formulation, do not allow confirmation of the expected superiority of the high-resolution model predictions.The U.S. Governments right to retain a non-exclusive royalty-free licence in and to any copyright is acknowledged.  相似文献   
92.
Growth as an integrative parameter of all physiological processes was measured in young sporophytes of temperate Laminaria digitata, Laminaria saccharina and Laminaria hyperborea exposed in the laboratory to irradiance consisting of either only photosynthetically active radiation (PAR) or to a spectrum including ultraviolet radiation (UVR) (PAR+UVA+UVB) by use of cut-off glass filters. Size increment was measured every 10 min over a period of 18–21 days using growth chambers with on-line video measuring technique. In the chamber, plants were grown at 10±2°C and 16:8 h light–dark cycles with 6 h additional UVR exposure in the middle of the light period. Tissue morphology and absorption spectra were measured in untreated young sporophytes while chlorophyll a content and DNA damage were measured in treated thalli at the end of the experiment. Sensitivity of growth under UVR was found to be related to the observed upper depth distribution limit of the upper sublittoral L. digitata, upper to mid sublittoral L. saccharina and lower sublittoral L. hyperborea. Tissue DNA damage is, however, dependent on thallus thickness which minimizes UVR effect where outer cell layers shade inner cells and provide longer pathlength for UVR. Exposure to UVR causes cellular, enzymatic and molecular damage. Presence of UV-absorbing compounds further reduces effective UVR from reaching physiological targets. The cost of producing higher amount of UV-absorbing compounds and effective DNA repair mechanism can, however, divert photosynthate at the expense of growth. Tissue chlorophyll a content was not significantly different between treatments suggesting a capacity for acclimation to moderate UVR fluence. Growth acclimation to repeated UVR exposure was observed within a period of 12 days while growth inhibition was observed after a longer UVR exposure period of 21 days. The results give further insight into the effects of UVR on the cellular level and show how ecological parameters such as the upper depth distribution limit are dependent on cellular processes.  相似文献   
93.
Cathodic adsorptive stripping voltammetry is one of the most sensitive analytical methods for ultratrace analysis. The detection limit is usually lower than 10−9 mol/L. Most adsorptive stripping procedures have been focused on the one ligand/one analyte approach. In order to reduce analysis time and sample volume, the possibility of simultaneously determining several metals by cathodic stripping voltammetry using a mixture of ligands was explored, e.g., by Colombo and van den Berg (1997). Here, we describe a new procedure for quantifying chromium and copper using 2,2′-bipyridine and 8-hydroxyquinoline (oxine). The effect of various operational parameters such as buffer type, ligand concentration, potential and time collection were assessed and optimized. Possible interferences by trace metals and organic matter were also investigated. Applicability for fresh water is illustrated. Electronic Publication  相似文献   
94.
The trend of rising ozone concentrations in forest ecosystems and the phytotoxicity of ozone demand a realistic risk assessment according to an internationally accepted and flux-based quality standard. Ozone fluxes within the canopy are influenced by chemical gas-phase reactions with nitrogen oxide and biogenic hydrocarbons and by surface deposition processes. Therefore, a differentiation of the ozone flux within the canopy is needed between stomatal uptake and other transport pathways. The Eddy Covariance technique is the method of choice for the determination of trace gas fluxes relevant for ozone chemistry. This method is also used for stomatal conductance measurements based on evapotranspiration fluxes and for emission measurements of biogenic hydrocarbons by PTR-MS. Although considerably research efforts were directed to canopy measurements in recent years, the underlying processes are not fully understood yet. Thus, major differences occur in the ratios of stomatal ozone uptake, non-stomatal deposition and gas-phase chemistry between different studies. Furthermore, the vertical concentration gradients within the canopy measured at several forest sites are rather inconsistent and the existing deposition models do rarely account for chemical transformation and detoxification processes. Only a simultaneous measurement of all photochemically relevant trace gases, plant physiological parameters at different sites and forest species over entire vegetation periods, and model parameterization according to the measurement results from the experimental sites will contribute to the clarification of the canopy processes and will ensure realistic risk assessments.  相似文献   
95.
96.
ADELwheat is an architectural model that describes development of wheat in 3D. This paper analyzes the robustness of the parameterization of ADELwheat for spring wheat cultivars in relation to plant population density and shading. The model was evaluated using data from two spring wheat experiments with three plant population densities and two light regimes. Model validation was done at two levels of aggregation: (a) by comparing parameterization functions used as well as parameter values to the data (leaf and tiller appearance, leaf number, blade dimensions, sheath length, internode length) and (b) by comparing ground cover (GC) and leaf area index (LAI) of simulated virtual wheat plots with GC and LAI calculated from data. A sensitivity analysis was performed by modulating parameters defining leaf blade dimensions and leaf or tiller appearance rate.In contrast to population density, shading generally increased phyllochron and delayed tiller appearance. Both at the level of the organ and at the level of the canopy the model performed satisfactorily. Parameterization functions in the model that had been established previously applied to independent data for different conditions; GC and LAI were simulated adequately at three population densities. Sensitivity analysis revealed that calibration of phyllochron and blade area needs to be accurate to prevent disproportional deviations in output.The robustness of the model parameterization and the simulation performance confirmed that the model is a complete architectural model for aboveground development of spring wheat. It can be used in studies that require simulation of spring wheat structure, such as studies on plant–insect interaction, remote sensing, and light interception.  相似文献   
97.
The present paper aims at investigating how changes in canopy structure and species physiology associated with the abandonment of mountain meadows and pastures affect their net photosynthesis. For this purpose, a multi-layer vegetation–atmosphere transfer (VAT) model is employed, which explicitly takes into account the structural and functional properties of the various canopy components and species. Three sites differing in land use are investigated, a meadow, a pasture and an abandoned area. Model simulations agree reasonably with measured canopy net photosynthetic rates, the meadow featuring the highest daily net photosynthesis, followed by the pasture and, finally, the abandoned area. A detailed process analysis suggests this ranking to be mainly due to bulk canopy physiology, which decreases from the meadow to the pasture and the abandoned area, reflecting species composition and species-specific photosynthetic capacities. Differences between the canopies with regard to canopy structure are found to be of minor importance. The amounts of green, photosynthetically active plant matter are too similar at the three sites to be a major source of variation in net photosynthesis. Large differences exist between the canopies with regard to the amount of photosynthetically inactive phytoelements. Even though a model analysis showed them to be potentially important, most of them are accumulated close to the ground surface, where they exert little influence on canopy net photosynthesis.  相似文献   
98.
Summary. The diterpene neocembrene A or (1E,5E,9E,12R)-1,5,9-trimethyl-12-(1-methylethenyl)-1,5,9-cyclotetradecatriene, known as the trail-following pheromone of the advanced Termitidae Nasutitermitinae Nasutitermes exitiosus and Trinervitermes bettonianus, has been identified after SPME-GC/MS as the major component of the trail-following pheromone of the Rhinotermitidae Prorhinotermitinae, Prorhinotermes canalifrons and P. simplex. In all the other Rhinotermitidae studied until now, the major component of their trail pheromones is dodecatrienol ((3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol). This biochemical data further add to the anatomical and molecular characteristics that give a special status to the taxon Prorhinotermes among Rhinotermitidae. In Prorhinotermes canalifrons and P. simplex, neocembrene A was the only secretory compound specific to the sternal gland surface that could be detected after SPME. It elicited orientation as well as recruitment behavioral effects. However, the comparison of the respective biological activities triggered by neocembrene A and by sternal gland secretion suggests that minor components of the latter are acting in synergy with neocembrene A.  相似文献   
99.
The consideration of a possible enhanced vertical migration of radiocaesium with the application of ammonium-ferric-hexacyano-ferrate (AFCF) as countermeasure, due to the colloidal nature of AFCF, made us set up a series of migration experiments. For the study two soil types were considered, which were either left unplanted or cultivated with ryegrass. Two AFCF concentrations, 1 and 10 g m-2, and an untreated control were applied. A simple diffusion–convection model was fitted to the data.The application of AFCF did not enhance the downward migration of radiocaesium in the profile. Moreover, for an unplanted sandy soil the application of AFCF significantly retarded the migration: 10 g AFCF m-2 decreased the convection term, V, from 0·78 to 0·42 cm a-1 and the diffusion component, D, from 0·21 to 0·09 cm2 a-1. For all other experimental conditions (unplanted loamy soil, ryegrass cultivated sandy and loamy soil), the application of AFCF did not have any effect on radiocaesium migration. Since AFCF does not promote the vertical migration of radiocaesium, enhanced groundwater contamination is improbable.  相似文献   
100.
A study was conducted to determine the distribution and sources of heavy metal pollutants in the sediments of Lake Pontchartrain. Sediment samples were collected from the northern and southern shorelines and analyzed for heavy metals by atomic absorption spectrometry. The heavy metals of interest were barium, copper, nickel, lead, and zinc. The concentrations of these metals indicate that the principal source of heavy metal pollution is associated with urban stormwater runoff and municipal discharges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号