首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   4篇
安全科学   21篇
废物处理   5篇
环保管理   27篇
综合类   44篇
基础理论   64篇
污染及防治   51篇
评价与监测   17篇
社会与环境   8篇
灾害及防治   4篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   14篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   11篇
  2016年   22篇
  2015年   10篇
  2014年   4篇
  2013年   20篇
  2012年   17篇
  2011年   13篇
  2010年   9篇
  2009年   9篇
  2008年   12篇
  2007年   15篇
  2006年   14篇
  2005年   1篇
  2004年   8篇
  2003年   7篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
71.
72.
The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01451-4) contains supplementary material, which is available to authorized users.  相似文献   
73.
Some of the most spectacular visual signals found in the animal kingdom are based on dietarily derived carotenoid pigments (which cannot be produced de novo), with a general assumption that carotenoids are limited resources for wild organisms, causing trade-offs in allocation of carotenoids to different physiological functions and ornamentation. This resource trade-off view has been recently questioned, since the efficiency of carotenoid processing may relax the trade-off between allocation toward condition or ornamentation. This hypothesis has so far received little exploratory support, since studies of digestive efficiency of wild animals are limited due to methodological difficulties. Recently, a method for quantifying the percentage of fat in fecal samples to measure digestive efficiency has been developed in birds. Here, we use this method to test if the intensity of the carotenoid-based coloration predicts digestive efficiency in a wild bird, the house finch (Haemorhous mexicanus). The redness of carotenoid feather coloration (hue) positively predicted digestion efficiency, with redder birds being more efficient at absorbing fats from seeds. We show for the first time in a wild species that digestive efficiency predicts ornamental coloration. Though not conclusive due to the correlative nature of our study, these results strongly suggest that fat extraction might be a crucial but overlooked process behind many ornamental traits.  相似文献   
74.
Soil microbes in temperate forest ecosystems are able to cycle several hundreds of kilograms of N per hectare per year and are therefore of paramount importance for N retention. Belowground C allocation by trees is an important driver of seasonal microbial dynamics and may thus directly affect N transformation processes over the course of the year. Our study aimed at unraveling plant controls on soil N cycling in a temperate beech forest at a high temporal resolution over a time period of two years, by investigating the effects of tree girdling on microbial N turnover. In both years of the experiment, we discovered (1) a summer N mineralization phase (between July and August) and (2) a winter N immobilization phase (November-February). The summer mineralization phase was characterized by a high N mineralization activity, low microbial N uptake, and a subsequent high N availability in the soil. During the autumn/winter N immobilization phase, gross N mineralization rates were low, and microbial N uptake exceeded microbial N mineralization, which led to high levels of N in the microbial biomass and low N availability in the soil. The observed immobilization phase during the winter may play a crucial role for ecosystem functioning, since it could protect dissolved N that is produced by autumn litter degradation from being lost from the ecosystem during the phase when plants are mostly inactive. The difference between microbial biomass N levels in winter and spring equals 38 kg N/ha and may thus account for almost one-third of the annual plant N demand. Tree girdling strongly affected annual N cycling: the winter N immobilization phase disappeared in girdled plots (microbial N uptake and microbial biomass N were significantly reduced, while the amount of available N in the soil solution was enhanced). This was correlated to a reduced fungal abundance in autumn in girdled plots. By releasing recently fixed photosynthates to the soil, plants may thus actively control the annual microbial N cycle. Tree belowground C allocation increases N accumulation in microorganisms during the winter which may ultimately feed back on plant N availability in the following growing season.  相似文献   
75.
Part 2 presents measures at the city scale, which are distinguished into object- and area-related means. The former ones include emission reduction, energy gaining and saving, as well as the climate-improving impact of rooftop and façade greening. Area-related means refer to the reduction of radiation temperature through shading and transpiration as well as impact of urban green areas of different size on the urban climate. Furthermore the opportunities to use subsurface urban heat island as an energy-reservoir for cooling or heating are discussed.  相似文献   
76.
77.
As a self-organizing entity, an ant colony must divide a limited number of workers among numerous competing functions. Adaptive patterns of labor allocation should vary with colony need across each annual cycle, but remain almost entirely undescribed in ants. Allocation to foraging in 55 field colonies of the Florida harvester ant (Pogonomyrmex badius) followed a consistent annual pattern over 4 years. Foragers preceded larvae in spring and peaked during maximal larval production in summer (0.37). In spring, proportion foraging increased due to an increase in forager number and reduction in colony size, and in late summer, it decreased as colony size increased through new worker birth and a loss of ~3 % of foragers per day. The removal of 50 % of the forager population revealed that, at the expense of larval survival, colonies did not draw workers from other castes to fill labor gaps. To determine if labor allocation was age specific, whole colonies were marked with cuticle color-specific wire belts and released, and each cohort's time to first foraging was noted. Workers that eclosed in summer alongside sexual alates darkened quickly and became foragers at ~43 days of age, whereas autumn-born workers required 200 or more days to do so. Following colony reproduction, these long-lived individuals foraged alongside short-lived, summer-born sisters during the next calendar year. Therefore, the large-scale, predictable patterns of labor allocation in P. badius appear to be driven by bimodal worker development rate and age structure, rather than worker responsiveness to changes in colony demand.  相似文献   
78.
The amount of food and when it is available affect both the timing of reproduction and the number of gametes produced by purple sea urchins, Strongylocentrotus purpuratus. To investigate this further, the effects of food availability on feeding rates, gonad growth, and gamete development were examined in S. purpuratus collected from the Point Loma kelp forest near San Diego, California, USA (32.69° N, 117.26° W) in September (Fall) 2007, and February (Spring) and July (Summer) 2008, using laboratory mesocosms. Each seasonal laboratory feeding experiment lasted 3 months, and different levels of food availability were established with different feeding frequencies (from 1 to 7 days week−1). Gonad tissues of male and female urchins were staged at the end of each experiment using histological analyses. Reduced food availability resulted in increased daily consumption rates, especially in the Fall when gamete development began. Food limitation at this time resulted in failure to produce viable gametes, suggesting there is a critical period early in gonad development when food limitation affects reproductive competency. Food limitation later in gonad development did not stop viable gamete production, although it did reduce gamete output.  相似文献   
79.
The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions.  相似文献   
80.
Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter <2.5 μm (PM2.5), particulate matter <10 μm (PM10), and fallout dust were measured at the Iranian Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM2.5 and PM10 mass concentration limits (35 and 150 µg m?3, respectively) set by the US National Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. The scanning electron microscope structure of fibrous-elongated minerals revealed individual fibers in the range of 1.5 nm to 71.65 µm in length and 0.2 nm to 3.7 µm in diameter. The presence of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed health-based studies in the region. The particulate samples show low to medium oxidative potential per unit of mass, in relation to an urban road side control, being more reactive with ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is exceptionally high, confirming that the workers are exposed to a considerable oxidative environment. PM released by iron ore mining and processing activities should be considered a potential health risk to the mine workers and nearby employees, and strategies to combat the issue are suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号