首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24599篇
  免费   234篇
  国内免费   347篇
安全科学   753篇
废物处理   1161篇
环保管理   3059篇
综合类   4101篇
基础理论   6447篇
环境理论   14篇
污染及防治   6397篇
评价与监测   1674篇
社会与环境   1440篇
灾害及防治   134篇
  2023年   132篇
  2022年   256篇
  2021年   283篇
  2020年   216篇
  2019年   279篇
  2018年   376篇
  2017年   390篇
  2016年   620篇
  2015年   459篇
  2014年   712篇
  2013年   1901篇
  2012年   840篇
  2011年   1148篇
  2010年   953篇
  2009年   967篇
  2008年   1148篇
  2007年   1201篇
  2006年   1007篇
  2005年   875篇
  2004年   800篇
  2003年   851篇
  2002年   754篇
  2001年   1009篇
  2000年   699篇
  1999年   412篇
  1998年   264篇
  1997年   300篇
  1996年   286篇
  1995年   338篇
  1994年   346篇
  1993年   270篇
  1992年   299篇
  1991年   281篇
  1990年   323篇
  1989年   277篇
  1988年   244篇
  1987年   219篇
  1986年   183篇
  1985年   201篇
  1984年   211篇
  1983年   210篇
  1982年   191篇
  1981年   184篇
  1980年   142篇
  1979年   152篇
  1978年   140篇
  1975年   112篇
  1974年   96篇
  1972年   104篇
  1971年   107篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
ABSTRACT: A “synthetic paired basin” technique that combines hydrologic monitoring and watershed modeling proves to be a useful tool in detecting hydrologic change in creeks draining basins undergoing urbanization. In this approach, measured stream flow following subbasin treatment (a period of urbanization) is compared with flow from a control subbasin over the same time period. The control subbasin is the pretreatment subbasin itself as represented by a well‐calibrated hydrologic model that is input with post‐treatment meteorological data. The technique is illustrated for stream monitoring sites at the outlets of two high‐resource sub‐basins in the Bear Creek basin of King County, Washington. Application of this technique holds promise to provide earlier warning of cumulative, human impacts on aquatic resources and to better inform adaptive watershed management for resource protection.  相似文献   
182.
A new technique is presented for the rapid, high-resolution identification and quantification of multiple trace gases above soils, at concentrations down to 0.01 microL L(-1) (10 ppb). The technique, selected ion flow tube mass spectrometry (SIFT-MS), utilizes chemical ionization reagent ions that react with trace gases but not with the major air components (N2, O2, Ar, CO2). This allows the real-time measurement of multiple trace gases without the need for preconcentration, trapping, or chromatographic separation. The technique is demonstrated by monitoring the emission of ammonia and nitric oxide, and the search for volatile organics, above containerized soil samples treated with synthetic cattle urine. In this model system, NH3 emissions peaked after 24 h at 2000 nmol m(-2) s(-1) and integrated to approximately 7% of the urea N applied, while NO emissions peaked about 25 d after urine addition at approximately 140 nmol m(-2) s(-1) and integrated to approximately 10% of the applied urea N. The monitoring of organics along with NH3 and NO was demonstrated in soils treated with synthetic urine, pyridine, and dimethylamine. No emission of volatile nitrogen organics from the urine treatments was observed at levels >0.01% of the applied nitrogen. The SIFT method allows the simultaneous in situ measurement of multiple gas components with a high spatial resolution of < 10 cm and time resolution <20 s. These capabilities allow, for example, identification of emission hotspots, and measurement of localized and rapid variations above agricultural and contaminated soils, as well as integrated emissions over longer periods.  相似文献   
183.
Reducing pesticide loads in surface waters implies identifying the pathways responsible for the pollution. The current study documents the pesticide contamination of the river Zwester Ohm, a 4917-ha catchment in Germany with 41% of the land used for crop production. Discharges and concentrations of 19 pesticides were measured continuously at three locations for 15 mo. The load detected at the outlet of the catchment amounted to 9048 g a.i. The losses represent 0.22% of the pesticides applied by the farmers. The contamination showed a seasonal pattern following the pesticide application times. The wastewater treatment plant system (WWTPS) in the catchment (two wastewater treatment plants [WWTP], 14 combined sewer overflows (CSO), four CSO tanks) emits during dry weather periods purified sewage and during storm events sewage mixed with stormwater runoff into the river. The contribution by the WWTPS to the pesticide load was defined as point-source pollution (PSP). The load was dominated by PSP with at least 77% of the total pollution. No significant interdependencies between intrinsic properties of the pesticides, hydrometeorological factors, and the loads occurring in the stream could be found. Therefore, it is not possible to predict PSP for other catchments based on the results from this study. Whereas 65% of the total load entered the river via the WWTP, a portion of 12% was attributed to the CSO. The study points out that the influence of CSO on PSP should be taken into account in future catchment studies in areas with comparable agricultural structure.  相似文献   
184.
ABSTRACT: Bringing water from Colorado River via the Central Arizona Project was perceived as the sole solution for Tucson Basin's water problem. Soon after Central Arizona Project's water arrived in Tucson in 1992, its quality provoked a quarrel over its use for potable purposes. A significant outcome of that quarrel was the enactment of the 1995 Proposition 200. The Proposition 200 precludes the use of Central Arizona Project's water for potable purposes, unless it is treated. Yet, it encourages using it for non‐potable purposes and for replenishing the Tucson aquifer through recharge. This paper examines the economic issues involved in utilizing Central Arizona Project's water for recharge. Four planning scenarios were designed to measure and compare the costs and benefits with and without Central Arizona Project's water recharge. Cost‐benefit analysis was utilized to measure recharge costs and benefits and to derive a rough estimate of cost savings from preventing land subsidence. The results indicate that the institutional requirements can be met with Central Arizona Project's water recharge. The economic benefits from reducing pumping cost and saving groundwater are not economically significant. Yet, when combining the use of Central Arizona Project's water for recharge and non‐potable purposes, it demonstrates positive net economic benefits.  相似文献   
185.
ABSTRACT: A National Pilot Project (NPP) on Livestock and the Environment was initiated in 1992 to help provide solutions to environmental problems associated with livestock production. A major development of the NPP was the Comprehensive Economic and Environmental Optimization Tool‐Livestock and Poultry (CEEOT‐LP), an integrated modeling system designed to produce economic and environmental indicators for alternative policy scenarios applied to intensive livestock production watersheds. The system consists of a farm‐level economic model (FEM) and two environmental models: the field‐scale APEX model and the watershed‐level SWAT model. To date, CEEOT‐LP has been applied to two watersheds in Texas and one in Iowa. Predicted reductions in P losses for two P‐based manure application rate scenarios, relative to baseline conditions, ranged from ?4 to ?54 percent across the three watersheds; however, N loss impacts ranged from a decrease of 34 percent to an increase of 79 percent. For five other alternative scenarios that were simulated for only one watershed, N and P loss impacts ranged between a reduction of 78 percent to an increase of 20 percent. Aggregate watershed‐level economic impacts of the seven scenarios spanned a spectrum of a 27 percent decrease to a 25 percent increase in profit, relative to the baseline.  相似文献   
186.
A hydrodynamic–oyster population model was developed to assess the effect of changes in freshwater inflow on oyster populations in Galveston Bay, Texas, USA. The population model includes the effects of environmental conditions, predators, and the oyster parasite, Perkinsus marinus, on oyster populations. The hydrodynamic model includes the effects of wind stress, river runoff, tides, and oceanic exchange on the circulation of the bay. Simulations were run for low, mean, and high freshwater inflow conditions under the present (1993) hydrology and predicted hydrologies for 2024 and 2049 that include both changes in total freshwater inflow and diversions of freshwater from one primary drainage basin to another. Freshwater diversion to supply the Houston metropolitan area is predicted to negatively impact oyster production in Galveston Bay. Fecundity and larval survivorship both decline. Mortality from Perkinsus marinus increases, but to a lesser extent. A larger negative impact in 2049 relative to 2024 originates from the larger drop in fecundity under that hydrology. Changes in recruitment and mortality, resulting in lowered oyster abundance, occur because the bay volume available for mixing freshwater input from the San Jacinto and Buffalo Bayou drainage basins that drain metropolitan Houston is small in comparison to the volume of Trinity Bay that presently receives the bulk of the bay's freshwater inflow. A smaller volume for mixing results in salinities that decline more rapidly and to a greater extent under conditions of high freshwater discharge. Thus, the decline in oyster abundance results from a disequilibrium between geography and salinity brought about by freshwater diversion. Although the bay hydrology shifts, available hard substrate does not. The simulations stress the fact that it is not just the well-appreciated reduction in freshwater inflow that can result in decreased oyster production. Changing the location of freshwater inflow can also significantly impact the bay environment, even if the total amount of freshwater inflow does not change.  相似文献   
187.
188.
Heterogeneous photocatalysed degradation of a herbicide derivative, N-(4-isopropylphenyl)-N',N'-dimethylurea (Isoproturon, 1) was investigated in aqueous suspensions of titanium dioxide by monitoring the change in absorption intensity and depletion in Total Organic Carbon content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, catalyst concentration, substrate concentration, different types of TiO(2) and in the presence of electron acceptors such as hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)) and potassium persulphate (K(2)S(2)O(8)) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient as compared with other photocatalysts. An attempt was made to identify the degradation product through GC-MS analysis technique.  相似文献   
189.
This paper provides non-hazardous solid waste audit procedures and bench mark audit data for golf courses (GCs). The paper also demonstrates the narrow scope of solid waste audit data, and the need to move towards a broader auditing scope such as that contained in sustainability auditing frameworks. A case study of Clear Lake Golf Course, located in southwestern Manitoba, Canada was completed. Annual waste generation rates at the GC were estimated to be 46.2 tonnes/year with 83% of this material compostable. Grass clipping material generated from the putting greens accounted for 79% of the waste stream. The GC achieved a solid waste diversion rate of 81% (waste generated not destined for landfill per total waste material generated). A future, realistic target of 97% diversion was also identified. The 7 day audit period was found to be unsuitable for estimating grass clipping generation rates. Implementation of a broader sustainability framework for future audits will harmonize many existing management functions such as solid waste auditing, waste characterizations, pollution prevention, green procurement, customer satisfaction, and the efficiency of the operations.  相似文献   
190.
ABSTRACT: The time to hydrograph peak of a watershed basin has been found to correlate with various statistical attributes (e.g., skewness and kurtosis) of its hypsometric curve (treated as probability distribution). This paper presents a theoretical travel time that is conceptually analogous to the time to hydrograph peak and can be calculated directly from the hypsometric curve of a watershed basin based on gravity and acceleration. The theoretical travel times for 23 selected watersheds in the United States are found to correlate significantly with their corresponding hypsometric attributes. In addition, the theoretical travel times are consistent with the times of concentration estimated from the Federal Aviation Administration method. Thus, this paper offers a simple theoretical explanation to the empirically identified linkage between time to hydrograph peak and hypsometric attributes. This theoretical travel time can provide an alternative way of characterizing the effects of basin morphometry on hydrologic response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号