首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   2篇
安全科学   2篇
废物处理   7篇
环保管理   11篇
综合类   9篇
基础理论   17篇
污染及防治   21篇
评价与监测   5篇
社会与环境   3篇
灾害及防治   2篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1994年   2篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1972年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
51.
Environmental and Ecological Statistics - Management of large-scale pelagic fisheries relies heavily on fishery data to provide information on tuna population status because, for widely distributed...  相似文献   
52.
53.
54.
Environmental Science and Pollution Research - This study analyzes the relationship between globalization, energy consumption, and economic growth among selected South Asian countries to promote...  相似文献   
55.
56.
If we consider Waste Electrical and Electronic Equipment (WEEE) management, we can see the development of different positions in developed and developing countries. This development started with the movement of WEEE from developed countries to the developing countries. However, when the consequences for health and the environment were observed, some developing countries introduced a ban on the import of this kind of waste under the umbrella of the Basel Convention, while some developed countries have been considering a regional or global WEEE recycling approach. This paper explores the current movements between Source and Destination countries, or the importers and exporters, and examines whether it is legal and why illegal traffic is still rife; how global initiatives could support a global WEEE management scheme; the recycling characteristics of the source an destination countries and also to ascertain whether the principle of Extended Producer Responsibility (EPR) has been established between the different stakeholders involved in WEEE management.Ultimately, the Full Extended Producer Responsibility is presented as a possible solution because the compensation of the environmental capacity for WEEE recycling or treatment could be made by the contribution of extra responsibility; and also generating an uniform standard for processing WEEE in an environmentally sound manner could support the regional or international solution of WEEE and also improve the performance of the informal sector.  相似文献   
57.
Abstract: A simple spreadsheet model was used to evaluate potential water quality benefits of high‐density development. The question was whether the reduced land consumed by higher density development (vs. standard suburban developments) would offset the worse water quality generated by a greater amount of impervious surface in the smaller area. Total runoff volume and per acre loadings of total phosphorous, total nitrogen, and total suspended solids increased with density as expected, but per capita loadings and runoff decreased markedly with density. For a constant or given population, then, higher density can result in dramatically lower total loadings than more diffuse suburban densities. The model showed that a simple doubling of standard suburban densities [to 8 dwelling units per acre (DUA) from about 3 to 5 DUA] in most cases could do more to reduce contaminant loadings associated with urban growth than many traditional stormwater best management practices (BMPs), and that higher densities such as those associated with transit‐oriented development could outperform almost all traditional BMPs, in terms of reduced loadings per a constant population. Because higher density is associated with vibrant urban life, building a better city may be the best BMP to mitigate the water quality damage that will accompany the massive urban growth expected for the next several decades.  相似文献   
58.
Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints. Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline. The commercial recovery of landfill CH4 as a source of renewable energy has been practised at full scale since 1975 and currently exceeds 105 Mt CO2-eq year(-1). Although landfill CH4 emissions from developed countries have been largely stabilized, emissions from developing countries are increasing as more controlled (anaerobic) landfilling practices are implemented; these emissions could be reduced by accelerating the introduction of engineered gas recovery, increasing rates of waste minimization and recycling, and implementing alternative waste management strategies provided they are affordable, effective, and sustainable. Aided by Kyoto mechanisms such as the Clean Development Mechanism (CDM) and Joint Implementation (JI), the total global economic mitigation potential for reducing waste sector emissions in 2030 is estimated to be > 1000 Mt CO2-eq (or 70% of estimated emissions) at costs below 100 US$ t(-1) CO2-eq year(-1). An estimated 20-30% of projected emissions for 2030 can be reduced at negative cost and 30-50% at costs < 20 US$ t(-) CO2-eq year(-1). As landfills produce CH4 for several decades, incineration and composting are complementary mitigation measures to landfill gas recovery in the short- to medium-term--at the present time, there are > 130 Mt waste year(-1) incinerated at more than 600 plants. Current uncertainties with respect to emissions and mitigation potentials could be reduced by more consistent national definitions, coordinated international data collection, standardized data analysis, field validation of models, and consistent application of life-cycle assessment tools inclusive of fossil fuel offsets.  相似文献   
59.
ABSTRACT: The spatial distribution of suspended particulatematter (SPM) was estimated in Mayagüez Bay on the west coast of Puerto Rico by using traditional ship board measurements and remotely sensed data acquired over four days during January 1990. This effort was part of a joint project between NASA and the University of Puerto Rico to develop techniques to monitor the water quality of a Caribbean coastal zone. This paper presents the methods and algorithms developed to map and analyze short term changes in the source and spatial distribution of SPM in Mayagüez Bay by using remotely sensed data acquired by the Calibrated Airborne Multispectral Scanner (CAMS). A PC-based data acquisition system was developed to record continuous ship measurements of select in- water variables. Spectral reflectances derived from CAMS red and near-IR data were corrected for atmospheric effects and then used to generate maps of SPM. These maps displayed SPM plumes associated with the mouths of the bay's three river systems. Significant day-to-day differences in the spatial characteristics were observed, suggesting that changes in river discharge occurred. However, an analysis of estimated river discharge, sediment yield, local wind field, and thermal river plume indicates that observed sediment plumes result primarily from wind-driven resuspension events.  相似文献   
60.
BACKGROUND: Chlorophenols (CPs) constitute a group of organic pollutants that are introduced into the environment as a result of several man-made activities, such as uncontrolled use of pesticides and herbicides, and as byproducts in the paper pulp bleaching. Promising removal technologies of chlorinated aromatics consist in the application of advanced oxidation processes (AOPs) that can provide an almost total degradation of a variety of contaminants. Among these, wide application find Fenton systems based on generation of reactive species having a high oxidizing power, such as hydroxyl radical HO*. Our objective was that of determining the overall degradation efficiency of the model compound 2,4-dichlorophenol (DCP) by thermal Fenton-type oxidation systems with a view toward defining in more details relevant process parameters, the effect of reaction temperature and of co-catalyst Cu2+. METHODS: Reaction conditions were similar to those generally adopted as optimal in many practical applications, i.e. pollutant/Fe2+ (as FeSO4) ratio ca. 20, Fe2+/Cu2+ (co-catalyst) 2:1, pH adjusted and controlled at pH 3, and H2O2 in excess (up to four-fold over the stoichiometric amount required for complete mineralization). RESULTS AND DISCUSSION: The results demonstrate that it is advantageous to carry out the reaction at a temperature markedly higher (70 degrees C) than ambient. The stepwise addition of H2O2 in aliquots yields an efficient transformation, while allowing a convenient control of the reaction exothermicity. Under these conditions, the essentially complete removal of the initial DCP is accomplished using just one equiv of H2O2 during 15 min; excess H2O2 (5 equivalents) yields extensive substrate mineralization. Also relevant, at 70 degrees C dechlorination of the initial DCP (and of derived reaction intermediates) is remarkably extensive (3-5% residual TOX), already with the addition of 1 equiv of H2O2. At the end of the reaction, IC and IC-MS analyses of the solution reveal that only low-molecular weight carboxylic acid (acetic, formic, oxalic, malonic, tartaric, etc.) contribute to the residual TOC. CONCLUSIONS: The whole of the results herein point to the advantage of performing the process at temperatures substantially higher than ambient (70 degrees C). Under the conditions adopted, almost complete degradation of the initial toxic compound can be achieved using hydrogen peroxide in fair excess (e.g., 3.5 equiv H2O2). RECOMMENDATIONS AND OUTLOOK: In applying practical Fenton-type degradation systems to heavily polluted wastes, either for the pre-treatment of waters with a high COD value prior to biodegradation or for complete mineralization of pollutants, the set up of appropriate reaction conditions appears to be a key factor. Also, it is desirable to keep the concentration of iron salts within the lower limits in order to minimize the production and disposal of iron oxide sludges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号