首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   3篇
  国内免费   25篇
安全科学   32篇
废物处理   15篇
环保管理   48篇
综合类   52篇
基础理论   67篇
污染及防治   48篇
评价与监测   21篇
社会与环境   10篇
灾害及防治   6篇
  2023年   3篇
  2022年   5篇
  2021年   1篇
  2019年   5篇
  2018年   4篇
  2017年   13篇
  2016年   8篇
  2015年   9篇
  2014年   11篇
  2013年   17篇
  2012年   10篇
  2011年   16篇
  2010年   14篇
  2009年   20篇
  2008年   17篇
  2007年   20篇
  2006年   11篇
  2005年   7篇
  2004年   6篇
  2003年   9篇
  2002年   10篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   11篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1979年   2篇
  1976年   2篇
排序方式: 共有299条查询结果,搜索用时 31 毫秒
81.
This paper reports the development of the Career–Family Attitudes Measure (CFAM), a new 56-item instrument for measuring individuals' attitudes towards managing the career and family interface. The measure was administered to a large sample of high school students and factor analyzed to reveal six dimensions of career and family attitudes, which were then scaled. Females in the sample had significantly more positive attitudes towards Balance and Independence than did males, while males had significantly more positive attitudes towards Dominance and Spousal Support than did females. Antecedents such as parental employment history and educational aspirations were significantly related to several of the scales. Results indicated that career–family attitudes involve preferences for the integration of career and family rather than for trade-offs between them. Research to establish the validity and explore the many applications of the CFAM is needed. © 1998 John Wiley & Sons, Ltd.  相似文献   
82.
The U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system with the process analysis tool is applied to China to study the seasonal variations and formation mechanisms of major air pollutants. Simulations show distinct seasonal variations, with higher surface concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with aerodynamic diameter less than or equal to 10 μm (PM10), column mass of carbon monoxide (CO) and NO2, and aerosol optical depth (AOD) in winter and fall than other seasons, and higher 1-h O3 and troposphere ozone residual (TOR) in spring and summer than other seasons. Higher concentrations of most species occur over the eastern China, where the air pollutant emissions are the highest in China. Compared with surface observations, the simulated SO2, NO2, and PM10 concentrations are underpredicted throughout the year with NMBs of up to ?51.8%, ?32.0%, and ?54.2%, respectively. Such large discrepancies can be attributed to the uncertainties in emissions, simulated meteorology, and deviation of observations based on air pollution index. Max. 1-h O3 concentrations in Jan. and Jul. at 36-km are overpredicted with NMBs of 12.0% and 19.3% and agree well in Apr. and Oct. Simulated column variables can capture the high concentrations over the eastern China and low values in the central and western China. Underpredictions occur over the northeastern China for column CO in Apr., TOR in Jul., and AODs in both Apr. and Jul.; and overpredictions occur over the eastern China for column CO in Oct., NO2 in Jan. and Oct., and AODs in Jan. and Oct. The simulations at 12-km show a finer structure in simulated concentrations than that at 36-km over higher polluted areas, but do not always give better performance than 36-km. Surface concentrations are more sensitive to grid resolution than column variables except for column NO2, with higher sensitivity over mountain and coastal areas than other regions.  相似文献   
83.
Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal’s gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher’s test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.  相似文献   
84.
ABSTRACT

In population exposure studies, personal exposure to PM is typically measured as a 12- to 24-hr integrated mass concentration. To better understand short-term variation in personal PM exposure, continuous (1-min averaging time) nephelometers were worn by 15 participants as part of two U.S. Environmental Protection Agency (EPA) longitudinal PM exposure studies conducted in Baltimore County, MD, and Fresno, CA. Participants also wore iner-tial impactor samplers (24-hr integrated filter samples) and recorded their daily activities in 15-min intervals. In Baltimore, the nephelometers correlated well (R2 = 0.66) with the PM25 impactors. Time-series plots of personal nephelometer data showed each participant's PM exposure to consist of a series of peaks of relatively short duration. Activities corresponding to a significant instrument response included cooking, outdoor activities, transportation, laundry, cleaning, shopping, gardening, moving between microenvironments, and removing/putting on the instrument. On average, 63-66% of the daily PM exposure occurred indoors at home (about 2/3 of which occurred during waking hours), primarily due to the large amount of time spent in that location (an average of 7277%). Although not a reference method for measuring mass concentration, the nephelometer did help identify PM sources and the relative contribution of those sources to an individual's personal exposure.  相似文献   
85.
ABSTRACT

Particulate matter (PM) exposure data from the U.S. Environmental Protection Agency (EPA)-sponsored 1998 Baltimore and 1999 Fresno PM exposure studies were analyzed to identify important microenvironments and activities that may lead to increased particle exposure for select elderly (>65 years old) subjects. Integrated 24-hr filter-based PM2.5 or PM10 mass measurements [using Personal Environmental Monitors(PEMs)] included personal measurements, indoor and outdoor residential measurements, and measurements at a central indoor site and a community monitoring site. A subset of the participants in each study wore passive nephelometers that continuously measured (1-min averaging time) particles ranging in size from 0.1 to ~10 um. Significant activities and locations were identified by a statistical mixed model (p < 0.01) for each study population based on the measured PM2.5 or PM10 mass and time activity data. Elevated PM concentrations were associated with traveling (car or bus), commercial locations (store, office, mall, etc.), restaurants, and working.

The modeled results were compared to continuous PM concentrations determined by the nephelometers while participants were in these locations. Overall, the nephelometer data agreed within 6% of the modeled PM2.5 results for the Baltimore participants and within ~20% for the Fresno participants (variability was due to zero drift associated with the nephelometer). The nephelom-eter did not agree as well with the PM10 mass measurements, most likely because the nephelometer optimally responds to fine particles (0.3–2 um). Approximately one-half (54 ± 31%; mean ± standard deviation from both studies) of the average daily PM2.5 exposure occurred inside residences, where the participants spent an average of 83 ± 10% of their time. These data also showed that a significant portion of PM2.5 exposure occurred in locations where participants spent only 4–13% of their time.  相似文献   
86.
Quantifying the contribution of emission sources responsible for mercury deposition in specific receptor regions helps develop emission control strategies that alleviate the impact on ecosystem and human health. In light of the maximum available control technology (MACT) rules proposed by U.S. Environmental Protection Agency (EPA) and the ongoing intergovernmental negotiation coordinated by United Nations Environmental Programme (UNEP) for mercury, the Community Multiscale Air Quality Modeling System (CMAQ-Hg) was applied to estimate the source contribution in six subregions of the contiguous United States (CONUS). The considered source categories include electric generating units (EGU), iron and steel industry (IRST), other industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC). It is found that, on an annual basis, dry deposition accounts for two-thirds of total annual deposition in CONUS (474 Mg yr(-1)), mainly contributed by reactive gaseous mercury (about 60% of total deposition). The contribution from large point sources can be as high as 75% near the emission sources (< 100 km), indicating that emission reduction may result in direct deposition decrease near the source locations. Out-of-boundary transport contributes from 68% (Northeast) to 91% (West Central) of total deposition. Excluding the contribution from out-of boundary transport, EGU contributes to about 50% of deposition in the Northeast, Southeast, and East Central regions, whereas emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). This suggests that the implementation of the new EPA MACT standards will significantly benefit only these three regions. Emission speciation is a key factor for local deposition. The source contribution exhibits strong seasonal variation. Deposition is greater in warm seasons due to stronger Hg0 oxidation. However, the contribution from anthropogenic sources is smaller in warm seasons because of larger emissions from natural processes and stronger vertical mixing that facilitates transport.  相似文献   
87.
In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed for the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions.  相似文献   
88.
89.
90.
This research examines the relations of the cognitive factors of beliefs and fears proposed by Price (1982) with the revised Jenkins Activity Survey (JAS) factors of achievement striving and impatience-irritability as well as the outcome measures of job and class performance. Results provide support for Spence, Helmreich, and Pred (1987), and Spence, Pred, and Helmreich's (1989) findings of the positive association between achievement striving and class performance but provide limited support for Price's (1982) model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号