首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20870篇
  免费   194篇
  国内免费   160篇
安全科学   560篇
废物处理   871篇
环保管理   2638篇
综合类   3261篇
基础理论   5602篇
环境理论   5篇
污染及防治   5384篇
评价与监测   1336篇
社会与环境   1442篇
灾害及防治   125篇
  2022年   180篇
  2021年   182篇
  2020年   130篇
  2019年   182篇
  2018年   285篇
  2017年   294篇
  2016年   450篇
  2015年   301篇
  2014年   478篇
  2013年   1607篇
  2012年   568篇
  2011年   840篇
  2010年   710篇
  2009年   696篇
  2008年   899篇
  2007年   893篇
  2006年   857篇
  2005年   682篇
  2004年   733篇
  2003年   698篇
  2002年   621篇
  2001年   904篇
  2000年   603篇
  1999年   366篇
  1998年   274篇
  1997年   265篇
  1996年   272篇
  1995年   296篇
  1994年   325篇
  1993年   266篇
  1992年   293篇
  1991年   266篇
  1990年   308篇
  1989年   284篇
  1988年   242篇
  1987年   214篇
  1986年   206篇
  1985年   204篇
  1984年   227篇
  1983年   218篇
  1982年   226篇
  1981年   199篇
  1980年   158篇
  1979年   176篇
  1978年   155篇
  1977年   144篇
  1975年   133篇
  1974年   143篇
  1973年   137篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
142.
143.
144.
145.
146.
147.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.  相似文献   
148.
149.
Despite many studies showing that landscape corridors increase dispersal and species richness for disparate taxa, concerns persist that corridors can have unintended negative effects. In particular, some of the same mechanisms that underlie positive effects of corridors on species of conservation interest may also increase the spread and impact of antagonistic species (e.g., predators and pathogens), foster negative effects of edges, increase invasion by exotic species, increase the spread of unwanted disturbances such as fire, or increase population synchrony and thus reduce persistence. We conducted a literature review and meta‐analysis to evaluate the prevalence of each of these negative effects. We found no evidence that corridors increase unwanted disturbance or non‐native species invasion; however, these have not been well‐studied concerns (1 and 6 studies, respectively). Other effects of corridors were more often studied and yielded inconsistent results; mean effect sizes were indistinguishable from zero. The effect of edges on abundances of target species was as likely to be positive as negative. Corridors were as likely to have no effect on antagonists or population synchrony as they were to increase those negative effects. We found 3 deficiencies in the literature. First, despite studies on how corridors affect predators, there are few studies of related consequences for prey population size and persistence. Second, properly designed studies of negative corridor effects are needed in natural corridors at scales larger than those achievable in experimental systems. Third, studies are needed to test more targeted hypotheses about when corridor‐mediated effects on invasive species or disturbance may be negative for species of management concern. Overall, we found no overarching support for concerns that construction and maintenance of habitat corridors may result in unintended negative consequences. Negative edge effects may be mitigated by widening corridors or softening edges between corridors and the matrix. Other negative effects are relatively small and manageable compared with the large positive effects of facilitating dispersal and increasing diversity of native species. Efectos Negativos Potenciales de los Corredores  相似文献   
150.
As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale‐dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2‐phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low‐density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long‐term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship of human encroachment and biodiversity response. Patrones Sistemáticos Temporales en la Relación entre Desarrollos Urbanos y la Biodiversidad de Aves de Bosque  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号