首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16341篇
  免费   171篇
  国内免费   137篇
安全科学   448篇
废物处理   627篇
环保管理   2285篇
综合类   2568篇
基础理论   4460篇
环境理论   4篇
污染及防治   4298篇
评价与监测   1005篇
社会与环境   851篇
灾害及防治   103篇
  2022年   111篇
  2021年   129篇
  2020年   105篇
  2019年   148篇
  2018年   224篇
  2017年   221篇
  2016年   354篇
  2015年   239篇
  2014年   357篇
  2013年   1265篇
  2012年   441篇
  2011年   632篇
  2010年   536篇
  2009年   520篇
  2008年   689篇
  2007年   691篇
  2006年   659篇
  2005年   506篇
  2004年   587篇
  2003年   521篇
  2002年   482篇
  2001年   702篇
  2000年   471篇
  1999年   282篇
  1998年   241篇
  1997年   217篇
  1996年   227篇
  1995年   247篇
  1994年   271篇
  1993年   219篇
  1992年   247篇
  1991年   222篇
  1990年   254篇
  1989年   238篇
  1988年   193篇
  1987年   173篇
  1986年   158篇
  1985年   167篇
  1984年   192篇
  1983年   180篇
  1982年   185篇
  1981年   179篇
  1980年   137篇
  1979年   153篇
  1978年   131篇
  1977年   117篇
  1975年   118篇
  1974年   115篇
  1973年   110篇
  1972年   133篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The respective speciation of aluminium in sewage effluent and in river water receiving effluent, has been examined. Results showed that concentrations of reactive aluminium changed over a timescale of hours and were controlled predominantly by pH. A minimum concentration of reactive aluminium occurred at a pH of approximately 6.8, coinciding with the prevalence of non-reactive, insoluble Al(OH)3 species. For receiving waters of low pH value, typically < pH 5, a large proportion of the 'naturally present' aluminium can be present in a reactive form at concentrations higher than the proposed Environmental Quality Standard (EQS). Mixing of waters of this type with effluent of a higher pH value leads to the precipitation of aluminium hydroxide. Mixing of effluent of pH value in the range 7.5-8.0 with river water in the same (or slightly higher) pH range appears to result in no appreciable change in the proportion of reactive aluminium; the change in concentration tends to be related simply to dilution. On the basis of a theoretical knowledge of aluminium speciation, results obtained in this work indicate that it is possible to make predictions about the proportion of reactive aluminium present in a receiving water, based on the pH values of the effluent water mixture and the concentration in the effluent. Reasonable comparisons between measured and predicted values were obtained at higher pH values, but the relationship was less certain at pH values less than 6.5 for which levels of reactive metal tended to be higher than the quality standard value.  相似文献   
992.
Natural-abundance delta15N showed that nitrate generated from commercial land application of swine (Sus scrofa domesticus) waste within a North Carolina Coastal Plain catchment was being discharged to surface waters by ground water passing beneath the sprayfields and adjacent riparian buffers. This was significant because intensive swine farms in North Carolina are considered non-discharge operations, and riparian buffers with minimum widths of 7.6 m (25 ft) are the primary regulatory control on ground water export of nitrate from these operations. This study shows that such buffers are not always adequate to prevent discharge of concentrated nitrate in ground water from commercial swine farms in the Mid-Atlantic Coastal Plain, and that additional measures are required to ensure non-discharge conditions. The median delta15N-total N of liquids in site swine waste lagoons was +15.4 +/- 0.2% vs. atmospheric nitrogen. The median delta15N-NO3 values of shallow ground water beneath and adjacent to site sprayfields, a stream draining sprayfields, and waters up to 1.5 km downstream were + 15.3 +/- 0.2 to + 15.4 +/- 0.2%. Seasonal and spatial isotopic variations in lagoons and well waters were greatly homogenized during ground water transport and discharge to streams. Neither denitrification nor losses of ammonia during spraying significantly altered the bulk ground water delta15N signal being delivered to streams. The lagoons were sources of chloride and potassium enrichment, and shallow ground water showed strong correlation between nitrate N, potassium, and chloride. The 15N-enriched nitrate in ground water beneath swine waste sprayfields can thus be successfully traced during transport and discharge into nearby surface waters.  相似文献   
993.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,4,3-benzodioxathiepin 3-oxide), a pesticide that is highly toxic to aquatic organisms, is widely used in the cotton (Gossypium hirsutum L.) industry in Australia and is a risk to the downstream riverine environment. We used the GLEAMS model to evaluate the effectiveness of a range of management scenarios aimed at minimizing endosulfan transport in runoff at the field scale. The field management scenarios simulated were (i) Conventional, bare soil at the beginning of the cotton season and seven irrigations per season; (ii) Improved Irrigation, irrigation amounts reduced and frequency increased to reduce runoff from excess irrigation; (iii) Dryland, no irrigation; (iv) Stubble Retained, increased soil cover created by retaining residue from the previous crop or a specially planted winter cover crop; and (v) Reduced Sprays, a fewer number of sprays. Stubble Retained was the most effective scenario for minimizing endosulfan transport because infiltration was increased and erosion reduced, and the stubble intercepted and neutralized a proportion of the applied endosulfan. Reducing excess irrigation reduced annual export rates by 80 to 90%, but transport in larger storm events was still high. Reducing the number of pesticide applications only reduced transport when three or fewer sprays were applied. We conclude that endosulfan transport from cotton farms can be minimized with a combination of field management practices that reduce excess irrigation and concentration of pesticide on the soil at any point in time; however, discharges, probably with endosulfan concentrations exceeding guideline values, will still occur in storm events.  相似文献   
994.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] have been found with increasing occurrence in rivers and streams. Their continued use will require changes in agricultural practices. We compared water quality from four crop-tillage treatments: (i) conventional moldboard plow (MB), (ii) MB with ryegrass (Lolium multiflorum Lam.) intercrop (IC), (iii) soil saver (SS), and (iv) SS + IC; and two drainage control treatments, drained (D) and controlled drainage-subirrigation (CDS). Atrazine (1.1 kg a.i. ha-1), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one] (0.5 kg a.i. ha-1), and metolachlor (1.68 kg a.i. ha-1) were applied preemergence in a band over seeded corn (Zea mays L.) rows. Herbicide concentration and losses were monitored from 1992 to spring 1995. Annual herbicide losses ranged from < 0.3 to 2.7% of application. Crop-tillage treatment influenced herbicide loss in 1992 but not in 1993 or 1994, whereas CDS affected partitioning of losses in most years. In 1992, SS + IC reduced herbicide loss in tile drains and surface runoff by 46 to 49% compared with MB. The intercrop reduced surface runoff, which reduced herbicide transport. Controlled drainage-subirrigation increased herbicide loss in surface runoff but decreased loss through tile drainage so that total herbicide loss did not differ between drainage treatments. Desethyl atrazine [6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine] comprised 7 to 39% of the total triazine loss.  相似文献   
995.
The biological health of soil is an important aspect of soil quality because of the many critical functions performed by organisms in soil. Various indicators of soil quality have been proposed, but measurements of microbial biomass are most commonly used. During decomposition of plant residues in soil the relative intensities of the O-alkyl-C signal decreases and the alkyl-C signal increases in nuclear magnetic resonance (NMR) spectra. This leads to the suggestion that the alkyl-C to O-alkyl-C ratio of a soil may indicate the degree of decomposition. Consequently, the overall resource quality of soil C as a substrate for heterotrophic microorganisms may be inversely related to the alkyl-C to O-alkyl-C ratio. Our hypothesis is that a relationship exists between the size of the soil microbial community (microbial biomass) and the quality of soil carbon as a resource for microorganisms. New data have been combined with previously published data to show that there was a significant, negative correlation between the biomass C to total C (Cmic, to Corg) ratio and the alkyl-C to O-alkyl-C ratio (p < 0.01), which supports our hypothesis.  相似文献   
996.
The prospect of using wastewater containing high loads of soluble organic matter (OM) for removing residual agricultural chemicals (fertilizer, pesticide, or herbicide) in farm soil, although promising, could have adverse effects on soil agricultural quality as a result of development of redoximorphic features in the soil profile. In this study, the effect of organic carbon supplement for bioremediation of residual fertilizer nitrate on soil properties, redox potential (Eh), pH, and metal ion mobilization was studied using sandy soils packed in columns. The study was included in a general project, described elsewhere (Ugwuegbu et al., 2000), undertaken to evaluate use of controlled water table management (WTM) systems to supply organic carbon for creating a reduced environment conducive to denitrification of residual fertilizer nitrate leaching from the farm to subsurface water. The columns were subjected to subirrigation with water containing soluble organic carbon in the form of glucose. The work was carried out in two experimental setups and the long-term effect of a range of glucose concentrations on the Eh, pH, and soluble levels of Fe and Mn was investigated. From the results obtained, it could be concluded that excessive organic carbon supplement to soil can have adverse effects on soil quality and that Eh and soluble Fe are the two most practical parameters for monitoring soil health during treatment of farm chemicals.  相似文献   
997.
Phosphorus (P) runoff from fields fertilized with swine (Sus scrofa domesticus) manure may contribute to eutrophication. The objective of this study was to evaluate the effect of aluminum sulfate (alum) and aluminum chloride applications to swine manure on P runoff from small plots cropped to tall fescue (Festuca arundinacea Shreb.). There were six treatments in this study: (i) unfertilized control plots, (ii) untreated manure, (iii) manure with alum at 215 mg Al L(-1), (iv) manure with aluminum chloride at 215 mg Al L(-1), (v) manure with alum at 430 mg Al L(-1), and (vi) manure with aluminum chloride at 430 mg Al L(-1). Manure application rates were equivalent to approximately 125 kg N ha(-1). Alum and aluminum chloride additions lowered soluble reactive phosphorus (SRP) levels from about 130 mg P L(-1) to approximately 30 mg P L(-1) at low rates. At high rates, SRP levels in swine manure were around 1 mg P L(-1). Soluble reactive P concentrations in runoff were 5.50, 3.66, 3.00, 0.87, 0.87, and 0.55 mg P L(-1), for normal manure, low alum, low aluminum chloride, high alum, high aluminum chloride, and unfertilized control plots, respectively. Hence, high alum and aluminum chloride reduced SRP concentrations in runoff by 84% and were not statistically different from SRP concentrations in runoff from unfertilized control plots. These data indicate that treating swine manure with alum or aluminum chloride could result in significant reductions in nonpoint-source P runoff.  相似文献   
998.
Historical streamflow and concentration data were used in regression models to estimate the annual flux of nitrogen (N) to the Gulf of Mexico and to determine where the nitrogen originates within the Mississippi Basin. Results show that for 1980-1996 the mean annual total N flux to the Gulf of Mexico was 1,568,000 t yr-1. The flux was about 61% nitrate N, 37% organic N, and 2% ammonium N. The flux of nitrate N to the Gulf has approximately tripled in the last 30 years with most of the increase occurring between 1970 and 1983. The mean annual N flux has changed little since the early 1980s, but large year-to-year variations in N flux occur because of variations in precipitation. During wet years the N flux can increase by 50% or more due to flushing of nitrate N that has accumulated in the soils and unsaturated zones in the basin. The principal source areas of N are basins in southern Minnesota, Iowa, Illinois, Indiana, and Ohio that drain agricultural land. Basins in this region yield 1500 to more than 3100 kg N km-2 yr-1 to streams, several times the N yield of basins outside this region.  相似文献   
999.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   
1000.
Ecological impacts of arable intensification in Europe   总被引:33,自引:0,他引:33  
Although arable landscapes have a long history, environmental problems have accelerated in recent decades. The effects of these changes are usually externalized, being greater for society as a whole than for the farms on which they operate, and incentives to correct them are therefore largely lacking. Arable landscapes are valued by society beyond the farming community, but increased mechanization and farm size, simplification of crop rotations, and loss of non-crop features, have led to a reduction in landscape diversity. Low intensity arable systems have evolved a characteristic and diverse fauna and flora, but development of high input, simplified arable systems has been associated with a decline in biodiversity. Arable intensification has resulted in loss of non-crop habitats and simplification of plant and animal communities within crops, with consequent disruption to food chains and declines in many farmland species. Abandonment of arable management has also led to the replacement of such wildlife with more common and widespread species. Soils have deteriorated as a result of erosion, compaction, loss of organic matter and contamination with pesticides, and in some areas, heavy metals. Impacts on water are closely related to those on soils as nutrient and pesticide pollution of water results from surface runoff and subsurface flow, often associated with soil particles, which themselves have economic and ecological impacts. Nitrates and some pesticides also enter groundwater following leaching from arable land. Greatest impacts are associated with simplified, high input arable systems. Intensification of arable farming has been associated with pollution of air by pesticides, NO2 and CO2, while the loss of soil organic matter has reduced the system's capacity for carbon sequestration. International trade contributes to global climate change through long distance transport of arable inputs and products. The EU Rural Development Regulation (1257/99) provides an opportunity to implement measures for alleviating ecological impacts of arable management through a combination of cross-compliance and agri-environment schemes. To alleviate the problems described in this paper, such measures should take account of opportunities for public/private partnerships and should integrate social, cultural, economic and ecological objectives for multifunctional land use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号