首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19079篇
  免费   174篇
  国内免费   168篇
安全科学   502篇
废物处理   765篇
环保管理   2556篇
综合类   2939篇
基础理论   5490篇
环境理论   4篇
污染及防治   4849篇
评价与监测   1197篇
社会与环境   1016篇
灾害及防治   103篇
  2022年   117篇
  2021年   135篇
  2020年   107篇
  2019年   151篇
  2018年   333篇
  2017年   333篇
  2016年   528篇
  2015年   290篇
  2014年   372篇
  2013年   1296篇
  2012年   838篇
  2011年   832篇
  2010年   562篇
  2009年   551篇
  2008年   737篇
  2007年   755篇
  2006年   719篇
  2005年   883篇
  2004年   1085篇
  2003年   899篇
  2002年   523篇
  2001年   739篇
  2000年   489篇
  1999年   308篇
  1998年   246篇
  1997年   225篇
  1996年   228篇
  1995年   256篇
  1994年   275篇
  1993年   221篇
  1992年   250篇
  1991年   229篇
  1990年   256篇
  1989年   242篇
  1988年   193篇
  1987年   173篇
  1986年   158篇
  1985年   167篇
  1984年   192篇
  1983年   180篇
  1982年   185篇
  1981年   179篇
  1980年   137篇
  1979年   153篇
  1978年   131篇
  1977年   117篇
  1975年   120篇
  1974年   117篇
  1973年   110篇
  1972年   135篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
We consider the problem of the vertically upwards disposal of heavy brine sewage from a two-dimensional diffuser in a lighter, homogeneous, motionless and shallow ambient sea. The rejected high salinity water of seawater desalination plants for urban and agricultural uses is such a case of a two dimensional fountain. The disposal of brine sewage produces a negative buoyant jet due to its initial momentum, which impinges on the free surface, spreads laterally on it and then sinks downwards, because of the negative buoyancy. Laboratory experiments and dimensional considerations are used in this paper in order to investigate the spreading behavior (width) of the vertical fountain which impinges on the free surface of the shallow ambient fluid. The experimental results have been used to derive an equation relating the width at the free surface with the initial parameters of the flow. In addition, the experimentally measured dilution of the heavier brine sewage on the recipient’s surface is compared with the dilution which was calculated by a numerical simulation of a well-known commercial software package, CORJET (a CORMIX sub model).  相似文献   
992.
Several reaction schemes, based on the conserved scalar theory, are implemented within a stochastic Lagrangian micromixing model to simulate the dispersion of reactive scalars in turbulent flows. In particular, the formulation of the reaction-dominated limit (RDL) reaction scheme is here extended to improve the model performance under non-homogeneous conditions (NHRDL scheme). The validation of the stochastic model is obtained by comparison with the available measurements of reactive pollutant concentrations in a grid-generated turbulent flow. This test case describes the dispersion of two atmospheric reactant species (NO and O3) and their reaction product (NO2) in an unbounded turbulent flow. Model inter-comparisons are also assessed, by considering the results of state-of-the-art models for pollutant dispersion. The present validation shows that RDL reaction scheme provides a systematic overestimation (relative error of ca. 85% around the centreline) in computing the local reactant consumption/production rate, whereas the NHRDL scheme drastically reduces this gap (relative error lower than 5% around the centreline). In terms of NO2 production (or reactant consumption), neglecting concentration fluctuations determines overestimations of the product mean of around 100% and a NO2 local production of one order of magnitude higher than the reference simulation. In terms of standard deviations, the concentration fluctuations of both the passive and reactive scalars are generally of the same order of magnitude or up to 1 or 2 orders of magnitudes higher than the corresponding ensemble mean values, except for the background reactant close to the plume edges. The study highlights the importance of modelling pollutant reactions depending on the instantaneous instead of the mean concentrations of the reactants, thus quantifying the role of the turbulent fluctuations of concentration, in terms of scalar statistics (mean, standard deviation, intensity of fluctuations, skewness and kurtosis of concentration, segregation coefficient, simulated reaction rate). This stochastic particle method represents an efficient numerical technique to solve the convection–diffusion equation for reactive scalars and involves several application fields: micro-scale air quality (urban and street-canyon scales), accidental releases, impact of odours, water quality and fluid flow industrial processes (e.g. combustion).  相似文献   
993.
Scour is defined as the processes of removal of sediment particles from water stream bed by the erosive action of activated water, and also carries sediment away from the hydraulic structures. Scour is the main cause of pier failure. Numerous equations are available for estimating temporal and equilibrium scour depth. The present study describes the phenomenon of temporal scour depth variation at bridge piers and deals with the methods for its estimation. The accuracy of six temporal scour depth equations are also checked in this study. After graphical and statistical analysis, it was found that the relationship proposed by Oliveto and Hager (J Hydraul Eng (ASCE) 128(9):811–520, 2002) predicts temporal scour depth better than other equations. Three equations of equilibrium time of scour are also used for computing equilibrium time. Equilibrium time equation proposed by Choi and Choi (Water Environ J 30(1–2):14–21, 2016) gives better agreements with observed values.  相似文献   
994.
Dam failures usually cause huge economic and life losses , especially in urban areas where there is a high concentration of inhabitants and economic actors. In order to understand the physical mechanisms of the formation and development of dam-break flooding, lots of efforts have been put into different types of modelling techniques. However, most of existing models are 1D (one-dimensional) or 2D models based on the shallow water equations. In this paper, we present a 3D numerical modelling investigation of dam-break flow hydrodynamics in an open L-shape channel. A newly developed 3D unstructured mesh finite element model is used here. An absorption-like term is introduced to the Navier–Stokes equations in order to control the conditioning of the matrix equation in the numerical solution process and thus improve the stability. A wetting and drying algorithm is used here to allow the free surface height to be treated with a high level of implicitness and stability. The 3D model has been validated by comparing the results with the published experimental data. Good agreement has been achieved at six selected locations. This study shows that the 3D unstructured mesh model is capable of capturing the 3D hydraulic aspects and complicated local flows around structures in simulation of dam-break flows.  相似文献   
995.
A typical two-phase debris flow exhibits a high and steep flow head consisting of rolling boulders and cobbles with intermittent or fluctuating velocity. The relative motion between the solid phase and the liquid phase is obvious. The motion of a two-phase debris flow depends not only on the rheological properties of the flow, but also on the energy transmission between the solid and liquid phases. Several models have been developed to study two-phase debris flows. An essential shortcoming of most of these models is the omission of the interaction between the two phases and identification of the different roles of the different materials in two-phase debris flows. The tracer particles were used for the velocity of solid phase and the velocity of liquid phase was calculated by the water velocity on the surface of the debris flow in the experiments. This paper analyzed the intermittent feature of two-phase debris flows based on videos of debris flows in the field and flume experiments. The experiments showed that the height of the head of the two-phase debris flow increased gradually in the initiation stage and reached equilibrium at a certain distance from the start of the debris flow. The height growth and the velocity of the flow head showed fluctuating characteristics. Model equations were established and the analyses proved that the average velocity of the two-phase debris flow head was proportional to the flood discharge and inversely proportional to the volume of the debris flow head.  相似文献   
996.
The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically. This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect. Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current. Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations. When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition. In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity. However, the scale effect would be relatively modest. The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation. Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity. Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents. The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously.  相似文献   
997.
Adaptations in infrastructure may be necessitated by changes in temperature and precipitation patterns to avoid losses and maintain expected levels of service. A roster of adaptation strategies has emerged in the climate change literature, especially with regard to timing: anticipatory, concurrent, or reactive. Significant progress has been made in studying climate change adaptation decision making that incorporates uncertainty, but less work has examined how strategies interact with existing infrastructure characteristics to influence adaptability. We use a virtual testbed of highway drainage crossings configured with a selection of actual culvert emplacements in Colorado, USA, to examine the effect of adaptation strategy and culvert characteristics on cost efficiency and service level under varying rates of climate change. A meta-model approach with multinomial regression is used to compare the value of better climate change predictions with better knowledge of existing crossing characteristics. We find that, for a distributed system of infrastructural units like culverts, knowing more about existing characteristics can improve the efficacy of adaptation strategies more than better projections of climate change. Transportation departments choosing climate adaptation strategies often lack detailed data on culverts, and gathering that data could improve the efficiency of adaptation despite climate uncertainty.  相似文献   
998.
Climate change impacts human health in a variety of ways. Variables including the climate-related risk factor, the health outcome and location all determine the nature and extent of the impact. The existence of different pathways and endpoints presents a problem for quantifying and comparing impacts. Disability-adjusted life year (DALY) provides a common scale, whereby the impact of climate change on both acute and chronic health outcomes can be compared. This study presents a methodology to calculate the impact of climate change on human health at a local scale, using cardiovascular disease (CVD) and meteorological disaster-related injuries (DRIs) in Osaka Prefecture, Japan, as applied case studies. An additional very fine scale assessment of CVD conducted at the neighbourhood level to demonstrate the importance of conducting risk assessments at a local level. The comparative results calculated the impact of climate change in 2050 to be 16.866 DALY/100,000 population for CVD and 0.645 DALY/100,000 for meteorological DRIs. The actual impact of climate change by 2050 on CVD is judged to be higher, although the relative risk was projected to be lower (1.006, compared to 1.263 for meteorological DRIs). The fine scale assessment revealed the variations in the projected impact of climate change on CVD for all administrative zones in Osaka Prefecture. The range of impacts varied from 0 to 114.29 DALY/100,000. The results demonstrate the applicability of using DALY to quantify the impact of climate change on different health outcomes, using a transferable methodology, and provide information that enables evidence-based prioritisation of climate change adaptation strategies at a local scale.  相似文献   
999.
Environmental Management - Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation—often by non-motorized...  相似文献   
1000.
Increasing abundance of geese in North America and Europe constitutes a major conservation success, but has caused increasing conflicts with economic, health and safety interests, as well as ecosystem impacts. Potential conflict resolution through a single, ‘one size fits all’ policy is hindered by differences in species’ ecology, behaviour, abundance and population status, and in contrasting political and socio-economic environments across the flyways. Effective goose management requires coordinated application of a suite of tools from the local level to strategic flyway management actions. The European Goose Management Platform, established under the Agreement on the Conservation of African-Eurasian Migratory Waterbirds, aims to harmonise and prioritise management, monitoring and conservation efforts, sharing best practice internationally by facilitating agreed policies, coordinating flyway efforts, and sharing and exchanging experiences and information. This depends crucially upon adequate government financing, the collection of necessary monitoring data (e.g., on distribution, abundance, hunting bags, demography, ecosystem and agricultural damage), the collation and effective use of such data and information, as well as the evaluation of outcomes of existing management measures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号