首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   0篇
  国内免费   1篇
安全科学   10篇
环保管理   25篇
综合类   6篇
基础理论   236篇
污染及防治   5篇
评价与监测   1篇
灾害及防治   8篇
  2014年   20篇
  2013年   29篇
  2012年   4篇
  2011年   12篇
  2010年   23篇
  2009年   20篇
  2008年   16篇
  2007年   19篇
  2006年   18篇
  2005年   25篇
  2004年   27篇
  2003年   11篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1982年   2篇
  1980年   1篇
排序方式: 共有291条查询结果,搜索用时 15 毫秒
231.
232.
Abstract:  Connectivity is a measure of how landscape features facilitate movement and thus is an important factor in species persistence in a fragmented landscape. The scarcity of empirical studies that directly quantify species movement and determine subsequent effects on population density have, however, limited the utility of connectivity measures in conservation planning. We undertook a 4-year study to calculate connectivity based on observed movement rates and movement probabilities for five age-sex classes of painted turtles ( Chrysemys picta ) inhabiting a pond complex in an agricultural landscape in northern Virginia (U.S.A.). We determined which variables influenced connectivity and the relationship between connectivity and subpopulation density. Interpatch distance and quality of habitat patches influenced connectivity but characteristics of the intervening matrix did not. Adult female turtles were more influenced by the habitat quality of recipient ponds than other age-sex classes. The importance of connectivity on spatial population dynamics was most apparent during a drought. Population density and connectivity were low for one pond in a wet year but dramatically increased as other ponds dried. Connectivity is an important component of species persistence in a heterogeneous landscape and is strongly dependent on the movement behavior of the species. Connectivity may reflect active selection or avoidance of particular habitat patches. The influence of habitat quality on connectivity has often been ignored, but our findings highlight its importance. Conservation planners seeking to incorporate connectivity measures into reserve design should not ignore behavior in favor of purely structural estimates of connectivity.  相似文献   
233.
Abstract:  Remnant plants in urban fringes and native plants in gardens have the potential to contribute to the conservation of threatened plants by increasing genetic diversity, effective size of populations, and levels of genetic connectedness. But they also pose a threat through the disruption of locally adapted gene pools. At Hyams Beach, New South Wales, Australia, four bushland stands of the rare shrub, Grevillea macleayana McGillivray, surround an urban area containing remnant and cultivated specimens of this species. Numbers of inflorescences per plant, fruits per plant, and visits by pollinators were similar for plants in urban gardens and bushland. Urban plants represented a substantial but complex genetic resource, displaying more genetic diversity than bushland plants judged by He , numbers of alleles per locus, and number of private alleles. Of 27 private alleles in urban plants, 17 occurred in a set of 19 exotic plants. Excluding the exotic plants, all five stands displayed a moderate differentiation ( FST = 0.14 ± 0.02), although the urban remnants clustered with two of the bushland stands. These patterns may be explained by high levels of selfing and inbreeding in this species and by long-distance dispersal (several seeds in the urban stand were fathered by plants in other stands). Genetic leakage (gene flow) from exotic plants to 321 seeds on surrounding remnant or bushland plants has not occurred. Our results demonstrate the conservation value of this group of urban plants, which are viable, productive, genetically diverse, and interconnected with bushland plants. Gene flow has apparently not yet led to genetic contamination of bushland populations, but high levels of inbreeding would make this a rare event and difficult to detect. Remnant plants in urban gardens could successfully contribute to recovery plans for endangered and vulnerable species.  相似文献   
234.
235.
236.
Abstract:  Biological control with specialist, nonindigenous, herbivorous insects is an important option for controlling invasive exotic plants in wildlands and nature reserves. It is assumed that biological control agents will reduce the dominance of the target weed, thereby increasing the native diversity of the associated plant community. However, this hypothesis has rarely been tested. We introduced Aphthona nigriscutis into grassland sites infested with the invasive exotic species Euphorbia esula L. on a nature reserve in Montana (U.S.A.). Two sites with better soil had been treated previously with herbicide, whereas two other sites had not. We measured the density and biomass of Euphorbia vegetative and flowering stems and number of native and exotic shrubs, grass-like plants, and forbs in 48 microplots in Aphthona release and control macroplots at each site. After 5 years, Aphthona release was associated with a 33–39% decline in Euphorbia aboveground biomass compared with controls at all sites. Other effects of the biocontrol depended on the site. Biocontrol slowed the recovery of species diversity at the sites previously treated with herbicide but slowed the loss of diversity at sites without a history of herbicide. Biocontrol introduction was not associated with a disproportionate increase in nontarget exotic species. Release of Aphthona caused a decline in the biomass of flowering stems relative to controls at good-soil, previous-herbicide sites but was associated with a relative increase in flower stem mass at poor-soil, no-herbicide sites. Our results suggest that biocontrol reductions in weed dominance will not always be associated with increased species diversity. More emphasis should be placed on conserving desirable communities and less on simple weed control. Monitoring of community-level effects should accompany biocontrol introductions on nature reserves.  相似文献   
237.
Abstract:  Because most reintroduced species are rare, data on their dynamics are scarce. Consequently, reintroduction programs often rely on data from other species or captive populations to project the performance of the reintroduced population in the wild. We compared the reproductive success and survival of a Persian fallow deer ( Dama mesopotamica ) population reintroduced in Israel over the first 5 years of the project with the survival and reproduction parameters estimated while planning the reintroduction. In addition, we compared the actual growth of the wild population with the growth originally projected by a computer model in the original reintroduction program. We monitored 74 radio-collared individuals (57 females and 17 males) released semiannually 1996–2001. Survival during the first year after release was lower than later years (0.90 and 0.82 versus 0.95 and 0.88, for females and males, respectively). Such an impact was not anticipated in the original plan, but overall survival was higher than originally projected. As assumed in the reintroduction program, reproductive success improved significantly with time since release and overall, was higher than expected. The mean number of animals released annually was lower than planned. Overall, the growth of the reintroduced population was slower than projected, but the deviation was close to confidence limits and the pattern similar. After 5 years it appears that the original time frame of 8–10 years for project completion can be met or at worst will cause a 1-year delay. Over the short term of 5 years, projection models in reintroduction programs are useful tools for assessing the sustained use of the breeding core, depicting the dynamics of the population in the wild, providing a relatively accurate time frame for the successful completion of the project, and assessing project success.  相似文献   
238.
239.
240.
Addressing the need for reference sites that permit wetland managers to evaluate the relative success of wetland restoration efforts, this project examines the early successional properties of a chronosequence of 17 forested wetlands that have been clear-cut and allowed to naturally revegetate. Ordinations performed on the data using CANOCO software indicated three general types of communities—one dominated by bald cypress (Taxodium distichum) and water tupelo (Nyssa aquatica), one dominated by black willow (Salix nigra), and one with a species composition similar to that of a mature stand of bottomland hardwoods. These divisions were correlated with the percentage of stems originating as coppice on stumps leftover from the clear-cut. In particular, the bottomland hardwood stands were regenerating predominantly as coppice, while the cypress/tupelo and black willow stands were regenerating primarily as seedlings. As indicated by the earlier development of overstory basal area, coppice sites were also regenerating much faster. The hydrology of a site also exhibited a strong impact on the rate of regeneration, with the semipermanently to permanently flooded portions of sites often exhibiting little or no regeneration. The results indicate that, because of the overwhelming reliance on coppice sprouts as the main source of stems and the concomitant enhanced rates of regeneration, certain vegetative parameters of clear-cut bottomland hardwood stands would not be effective benchmarks by which to judge the relative success of creation and restoration efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号