首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   0篇
  国内免费   1篇
安全科学   10篇
环保管理   25篇
综合类   1篇
基础理论   236篇
污染及防治   5篇
评价与监测   1篇
灾害及防治   8篇
  2014年   20篇
  2013年   29篇
  2012年   4篇
  2011年   12篇
  2010年   23篇
  2009年   20篇
  2008年   16篇
  2007年   19篇
  2006年   18篇
  2005年   25篇
  2004年   27篇
  2003年   11篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1982年   2篇
  1980年   1篇
排序方式: 共有286条查询结果,搜索用时 12 毫秒
241.
A strategy for recovering endangered species during climate change is to restore ecosystem processes that moderate effects of climate shifts. In mid‐latitudes, storm patterns may shift their intensity, duration, and frequency. These shifts threaten flooding in human communities and reduce migration windows (conditions suitable for migration after a storm) for fish. Rehabilitation of historic floodplains can in principle reduce these threats via transient storage of storm water, but no one has quantified the benefit of floodplain rehabilitation for migrating fish, a widespread biota with conservation and economic value. We used simple models to quantify migration opportunity for a threatened migratory fish, steelhead (Oncorhynchus mykiss), in an episodic rain‐fed river system, the Pajaro River in central California. We combined flow models, bioenergetic models, and existing climate projections to estimate the sensitivity of migration windows to altered storm patterns under alternate scenarios of floodplain rehabilitation. Generally, migration opportunities were insensitive to warming, weakly sensitive to duration or intensity of storms, and proportionately sensitive to frequency of storms. The rehabilitation strategy expanded migration windows by 16–28% regardless of climate outcomes. Warmer conditions raised the energy cost of migrating, but not enough to matter biologically. Novel findings were that fewer storms appeared to pose a bigger threat to migrating steelhead than warmer or smaller storms and that floodplain rehabilitation lessened the risk from fewer or smaller storms across all plausible hydroclimatic outcomes. It follows that statistical downscaling methods may mischaracterize risk, depending on how they resolve overall precipitation shifts into changes of storm frequency as opposed to storm size. Moreover, anticipating effects of climate shifts that are irreducibly uncertain (here, rainfall) may be more important than anticipating effects of relatively predictable changes such as warming. This highlights a need to credibly identify strategies of ecosystem rehabilitation that are robust to uncertainty. Rehabilitación de Planicies Inundables como Cerco contra la Incertidumbre Hidroclimática en un Corredor Migratorio de Oncorhynchus mykiss, Especie Amenazada  相似文献   
242.
Water hyacinth (WH), an aquatic plant macrophyte, was investigated for its ability to perform as a suitable adsorbent for methylene blue (MB) from aqueous solution. The non-living biomass of WH was subjected to several chemical treatments, namely, washing with hot water, washing with hot dilute HCl, soaking in NaOH, soaking in HNO3, and sulfonation. The system variables studied also include pH and MB concentration. The Langmuir isotherm was found to represent the measured adsorption data well except for WH soaked in NaOH, which was found to be better represented by the Freundlich isotherm. Values of the dimensionless separation factor, K R, indicated that the adsorption systems in this study are all favorable. Values of the first layer of adsorption were calculated by the non-linear multilayer adsorption model, and the specific surface area values were found to be high and comparable to commercially activated carbons.  相似文献   
243.
244.
Abstract:  Connectivity is a measure of how landscape features facilitate movement and thus is an important factor in species persistence in a fragmented landscape. The scarcity of empirical studies that directly quantify species movement and determine subsequent effects on population density have, however, limited the utility of connectivity measures in conservation planning. We undertook a 4-year study to calculate connectivity based on observed movement rates and movement probabilities for five age-sex classes of painted turtles ( Chrysemys picta ) inhabiting a pond complex in an agricultural landscape in northern Virginia (U.S.A.). We determined which variables influenced connectivity and the relationship between connectivity and subpopulation density. Interpatch distance and quality of habitat patches influenced connectivity but characteristics of the intervening matrix did not. Adult female turtles were more influenced by the habitat quality of recipient ponds than other age-sex classes. The importance of connectivity on spatial population dynamics was most apparent during a drought. Population density and connectivity were low for one pond in a wet year but dramatically increased as other ponds dried. Connectivity is an important component of species persistence in a heterogeneous landscape and is strongly dependent on the movement behavior of the species. Connectivity may reflect active selection or avoidance of particular habitat patches. The influence of habitat quality on connectivity has often been ignored, but our findings highlight its importance. Conservation planners seeking to incorporate connectivity measures into reserve design should not ignore behavior in favor of purely structural estimates of connectivity.  相似文献   
245.
The photocatalytic degradation of dye pollutant sulforhodamine-B (SRB) in aqueous titanium dioxide (TiO2) dispersions was examined under three lighting regimes: UV light (330 nm〈λ〈 380 nm), sunlight, and visible light (λ〉450 nm), all investigated at pH=2.5. Total organic carbon (TOC) and chemical oxygen demand (CODer) assays show that the degradation rate of SRB is much higher when irradiated with UV and sunlight compared with visible light. The temporal concentration changes of SRB illustrated a first-order reaction and the rate constant, k, is 0.197 min^-1, 0.152 min^-1, 0.027 min^-1, respectively, under the three lighting conditions. The final mineralized products were amine compounds identified by infrared spectrophotometry. When irradiated with visible light, the photocatalytic degradation rate could be improved by lowering the H2O2 concentration and inhibited by increasing the H2O2 concentration, but results contrary to the above were obtained when UV light was used for irradiation.  相似文献   
246.
Abstract: Networks of sites of high importance for conservation of biological diversity are a cornerstone of current conservation strategies but are fixed in space and time. As climate change progresses, substantial shifts in species’ ranges may transform the ecological community that can be supported at a given site. Thus, some species in an existing network may not be protected in the future or may be protected only if they can move to sites that in future provide suitable conditions. We developed an approach to determine appropriate climate‐change adaptation strategies for individual sites within a network that was based on projections of future changes in the relative proportions of emigrants (species for which a site becomes climatically unsuitable), colonists (species for which a site becomes climatically suitable), and persistent species (species able to remain within a site despite the climatic change). Our approach also identifies key regions where additions to a network could enhance its future effectiveness. Using the sub‐Saharan African Important Bird Area (IBA) network as a case study, we found that appropriate conservation strategies for individual sites varied widely across sub‐Saharan Africa, and key regions where new sites could help increase network robustness varied in space and time. Although these results highlight the potential difficulties within any planning framework that seeks to address climate‐change adaptation needs, they demonstrate that such planning frameworks are necessary, if current conservation strategies are to be adapted effectively, and feasible, if applied judiciously.  相似文献   
247.
Abstract: Invertebrates with specific host species may have a high probability of extinction when their hosts have a high probability of extinction. Some of these invertebrates are more likely to go extinct than their hosts, and under some circumstances, specific actions to conserve the host may be detrimental to the invertebrate. A critical constraint to identifying such invertebrates is uncertainty about their level of host specificity. We used two host‐breadth models that explicitly incorporated uncertainty in the host specificity of an invertebrate species. We devised a decision protocol to identify actions that may increase the probability of persistence of a given dependent species. The protocol included estimates from the host‐breadth models and decision nodes to identify cothreatened species. We applied the models and protocol to data on 1055 insects (186 species) associated with 2 threatened (as designated by the Australian Government) plant species and 19 plant species that are not threatened to determine whether any insect herbivores have the potential to become extinct if the plant becomes extinct. According to the host‐breadth models, 18 species of insect had high host specificity to the threatened plant species. From these 18 insects, the decision protocol highlighted 6 species that had a high probability of extinction if their hosts were to become extinct (3% of all insects examined). The models and decision protocol have added objectivity and rigor to the process of deciding which dependent invertebrates require conservation action, particularly when dealing with largely unknown and speciose faunas.  相似文献   
248.
Abstract: Estimating the abundance of migratory species is difficult because sources of variability differ substantially among species and populations. Recently developed state‐space models address this variability issue by directly modeling both environmental and measurement error, although their efficacy in detecting declines is relatively untested for empirical data. We applied state‐space modeling, generalized least squares (with autoregression error structure), and standard linear regression to data on abundance of wetland birds (shorebirds and terns) at Moreton Bay in southeast Queensland, Australia. There are internationally significant numbers of 8 species of waterbirds in the bay, and it is a major terminus of the large East Asian‐Australasian Flyway. In our analyses, we considered 22 migrant and 8 resident species. State‐space models identified abundances of 7 species of migrants as significantly declining and abundance of one species as significantly increasing. Declines in migrant abundance over 15 years were 43–79%. Generalized least squares with an autoregressive error structure showed abundance changes in 11 species, and standard linear regression showed abundance changes in 15 species. The higher power of the regression models meant they detected more declines, but they also were associated with a higher rate of false detections. If the declines in Moreton Bay are consistent with trends from other sites across the flyway as a whole, then a large number of species are in significant decline.  相似文献   
249.
Predicting Risk of Habitat Conversion in Native Temperate Grasslands   总被引:1,自引:0,他引:1  
Abstract: Native grasslands that support diverse populations of birds are being converted to cropland at an increasing rate in the Prairie Pothole Region of North America. Although limited funding is currently available to mitigate losses, accurate predictions of probability of conversion would increase the efficiency of conservation measures. We studied conversion of native grassland to cropland in the Missouri Coteau region of North and South Dakota (U.S.A.) during 1989–2003. We estimated the probability of conversion of native grassland to cropland with satellite imagery and logistic regression models that predicted risk of conversion and by comparing the overlap between areas of high biological value and areas most vulnerable to conversion. Annualized probability of conversion was 0.004, and 36,540 ha of native grassland were converted to cropland during the period of our study. Our predictive models fit the data and correctly predicted 70% of observed conversions of grassland. Probability of conversion varied spatially and was correlated with landscape features like amount of surrounding grassland, slope, and soil productivity. Tracts of high biological value were not always at high risk of conversion. We concluded the most biologically valuable areas that are most vulnerable to conversion should be prioritized for conservation. This approach can be applied broadly to other systems and offers great utility for implementing conservation in areas with spatially variable biological value and probability of conversion.  相似文献   
250.
Abstract:  In North American boreal forests, wildfire is the dominant agent of natural disturbance. A natural-disturbance model has therefore been promoted as an ecologically based approach to forest harvesting in these systems. Given accelerating resource demands, fire competes with harvest for timber, and there is increasing pressure to salvage naturally burned areas. This creates a management paradox: simultaneous promotion of natural disturbance as a guide to sustainability while salvaging forests that have been naturally disturbed. The major drivers of postfire salvage in Canadian boreal forests are societal perceptions, overallocation of forest resources, and economic and policy incentives, and postfire salvage compromises forest sustainability by diminishing the role of fire as a critical, natural process. These factors might be reconciled through consideration of fire in resource allocations and application of active adaptive management. We provide novel treatment of the role of burn severity in mediating biotic response by examining its influence on the amount, type, and distribution of live, postfire residual material, and we highlight the role of fire in shaping spatial and temporal patterns in forest biodiversity. Maintenance of natural postfire forests is a critical component of an ecosystem-based approach to forest management in boreal systems. Nevertheless, present practices focus heavily on expediting removal of timber from burned forests, despite increasing evidence that postfire communities differ markedly from postharvest systems, and there is a mismatch between emerging management models and past management practices. Policies that recognize the critical role of fire in these systems and facilitate enhanced understanding of natural system dynamics in support of development of sustainable management practices are urgently needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号