首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11490篇
  免费   160篇
  国内免费   112篇
安全科学   369篇
废物处理   526篇
环保管理   1614篇
综合类   1353篇
基础理论   3120篇
环境理论   7篇
污染及防治   3168篇
评价与监测   813篇
社会与环境   719篇
灾害及防治   73篇
  2023年   58篇
  2022年   136篇
  2021年   121篇
  2020年   88篇
  2019年   111篇
  2018年   197篇
  2017年   192篇
  2016年   298篇
  2015年   209篇
  2014年   293篇
  2013年   886篇
  2012年   372篇
  2011年   559篇
  2010年   438篇
  2009年   483篇
  2008年   567篇
  2007年   569篇
  2006年   513篇
  2005年   419篇
  2004年   366篇
  2003年   429篇
  2002年   364篇
  2001年   526篇
  2000年   369篇
  1999年   209篇
  1998年   155篇
  1997年   141篇
  1996年   158篇
  1995年   180篇
  1994年   143篇
  1993年   111篇
  1992年   133篇
  1991年   127篇
  1990年   138篇
  1989年   140篇
  1988年   104篇
  1987年   97篇
  1986年   74篇
  1985年   99篇
  1984年   94篇
  1983年   95篇
  1982年   94篇
  1981年   86篇
  1980年   63篇
  1979年   72篇
  1977年   57篇
  1976年   49篇
  1975年   57篇
  1974年   52篇
  1973年   53篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
641.
Detailed mechanisms are outlined for the chemical reactions that contribute to In-situ formation and atmospheric removal of the unsaturated aliphatic contaminants acrolein, acrylonitrile, and maleic anhydride. In-situ formation of small amounts of acrolein and maleic anhydride may Involve the reaction of OH (and O3) with 1,3-dienes and the reaction of OH with aromatic hydrocarbons, respectively. There is no known pathway for In-situ formation of acrylonitrile. Rapid removal of acrolein (half-life = less than one day) and of maleic anhydride (half-life = several hours) is expected from their rapid reactions with OH (major), O3, and NO3. These reactions lead to formaldehyde and glyoxal from acrolein and to dicarbonyls from maleic anhydride. Acrylonitrile is removed at a slower rate (half-life = 2–7 days) by reaction with OH, leading to formaldehyde and formyl cyanide.  相似文献   
642.
Detailed mechanisms are outlined for the chemical reactions involved In the atmospheric removal of four unsaturated chlorinated aliphatic contaminants, allyl chloride, chloroprene, hexachlorocyclopentadiene and vlnylldene chloride. Rate constants estimated from structure-reactivity relationships Indicate rapid removal for all four compounds by reactions with OH (major), ozone, and NO3, with half-lives of 2-16 hrs for removal by reaction with OH. Reaction products of allyl chloride (formaldehyde, chloroacetaldehyde, peroxychloroacetyl nitrate) and vinylidene chloride (formaldehyde, phosgene, chloroacetyl chloride) are consistent with OH addition-Initiated pathways that include Cl atom elimination. The chlorine atoms produced In the OH reaction sequence react rapidly with all four unsaturated compounds, but these reactions are of negligible Importance for atmospheric removal of the four toxic contaminants studied. Analogous mechanisms are discussed for chloroprene (leading to formaldehyde, CH2 = CCICHO, and CICOCHO) and for hexachlorocyclopentadlene (leading to oxalyl chloride and CICOCCI2COCI).  相似文献   
643.
Abstract

Municipal Solid Waste incinerator residues produced in two types of facilities were exhaustively characterized: granulometry, mineralogy, chemical composition, leaching behavior, and elemental distribution as a function of particle size. Air Pollution Control (APC) residues coming from a semi-dry scrubber have shown higher solubility than fly ashes originating in an Electrostatic Precipitator (ESP), as well as higher contents in volatile metals (Cd, Hg). Different metal speciation and distribution as a function of particle size have been found in fly ashes (ESP residues) and APC residues. In APC residues, heavy metals (with the exception of Hg) show a parabolic distribution with maxima in the smallest and largest particles, following the same profile as soluble salts. Metal distribution for APC residues exhibits that metals generally are not associated with silicate aluminate matrix. Results show the effect of adding lime to APC residues in metal speciation and distribution.  相似文献   
644.
ABSTRACT

A mathematical model was used to predict the deposition fractions (DF) of PM within human lungs. Simulations using this computer model were previously validated with human subject data and were used as a control case. Human intersubject variation was accounted for by scaling the base lung morphology dimensions based on measured functional residual capacity (FRC) values. Simulations were performed for both controlled breathing (tidal volumes [VT] of 500 and 1000 mL, respiratory times [T] from 2 to 8 sec) and spontaneous breathing conditions. Particle sizes ranged from 1 to 5 um. The deposition predicted from the computer model compared favorably with the experimental data. For example, when VT = 1000 mL and T = 2 sec, the error was 1.5%. The errors were slightly higher for smaller tidal volumes. Because the computer model is deterministic (i.e., derived from first principles of physics), the model can be used to predict deposition fractions for a range of situations (i.e., for different ventilatory parameters and particle sizes) for which data are not available. Now that the model has been validated, it may be applied to risk assessment efforts to estimate the inhalation hazards of airborne pollutants.  相似文献   
645.
ABSTRACT

Most time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects.

Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2 5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4 2-, which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2 5 samples as an indicator of accumulation mode particu-late matter of ambient origin.  相似文献   
646.
Abstract

A computer model called the Ozone Risk Assessment Model (ORAM) was developed to evaluate the health effects caused by ground-level ozone (O3) exposure. ORAM was coupled with the U.S. Environmental Protection Agency’s (EPA) Third-Generation Community Multiscale Air Quality model (Models-3/CMAQ), the state-of-the-art air quality model that predicts O3 concentration and allows the examination of various scenarios in which emission rates of O3 precursors (basically, oxides of nitrogen [NOx] and volatile organic compounds) are varied. The principal analyses in ORAM are exposure model performance evaluation, health-effects calculations (expected number of respiratory hospital admissions), economic valuation, and sensitivity and uncertainty analysis through a Monte Carlo simulation. As a demonstration of the system, ORAM was applied to the eastern Tennessee region, and the entire O3 season was simulated for a base case (typical emissions) and three different emission scenarios. The results indicated that a synergism occurs when reductions in NOx emissions from mobile and point sources were applied simultaneously. A 12.9% reduction in asthma hospital admissions is expected when both mobile and point source NOx emissions are reduced (50 and 70%, respectively) versus a 5.8% reduction caused by mobile source and a 3.5% reduction caused by point sources when these emission sources are reduced individually.  相似文献   
647.
Abstract

A national analysis of weekday/weekend ozone (O3) differences demonstrates significant variation across the country. Weekend 1-hr or 8-hr maximum O3 varies from 15% lower than weekday levels to 30% higher. The weekend O3 increases are primarily found in and around large coastal cities in California and large cities in the Midwest and Northeast Corridor. Both the average and the 95th percentile of the daily 1-hr and 8-hr maxima exhibit the same general pattern. Many sites that have elevated O3 also have higher O3 on weekends even though traffic and O3 precursor levels are substantially reduced on weekends. Detailed studies of this phenomenon indicate that the primary cause of the higher O3 on weekends is the reduction in oxides of nitrogen (NOx) emissions on weekends in a volatile organic compound (VOC)-limited chemical regime. In contrast, the lower O3 on weekends in other locations is probably a result of NOx reductions in a NOx-limited regime. The NOx reduction explanation is supported by a wide range of ambient analyses and several photochemical modeling studies. Changes in the timing and location of emissions and meteorological factors play smaller roles in weekend O3 behavior. Weekday/weekend temperature differences do not explain the weekend effect but may modify it.  相似文献   
648.
ABSTRACT

The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   
649.
Abstract

About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are often defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog—induced primarily from traffic, but also from industrial activities, power generation, and solvents—has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to global climate change. Yet, with appropriate planning megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems.

This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. This review considers not only megacities, but also urban centers with somewhat smaller populations, for while each city—its problems, resources, and outlook—is unique, the need for a holistic approach to complex environmental problems is the same. There is no single strategy to reduce air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialogue is essential to effectively implement the regulations required to address air quality.  相似文献   
650.
Abstract

Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5) in Steubenville, OH, have decreased by more than 10 μg/m3 since the landmark Harvard Six Cities Study1 associated the city’s elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 μg/m3) was 3.4g/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for ~31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 μg/m3 to Steubenville’s mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to account for autocorrelation can lead to incorrect conclusions about statistical significance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号