首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   1篇
  国内免费   3篇
安全科学   3篇
废物处理   6篇
环保管理   6篇
综合类   14篇
基础理论   29篇
污染及防治   61篇
评价与监测   27篇
社会与环境   11篇
  2022年   14篇
  2021年   27篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   8篇
  2013年   16篇
  2012年   2篇
  2011年   12篇
  2010年   6篇
  2009年   2篇
  2008年   6篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1965年   1篇
  1964年   1篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
  1959年   2篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
91.
The groundwater samples collected from the shallow and deep groundwater aquifers of an industrial area of the Kanpur city (Uttar Pradesh, India) were analyzed for the concentration levels and distribution pattern of nitrogenous species, such as nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), ammonical-nitrogen (NH4-N), organic-nitrogen (Org-N) and total Kjeldahl-nitrogen (TKN) to identify the possible contamination source. Geo-statistical approach was adopted to determine the distribution and extent of the contaminant plume. In the groundwater aquifers NO3-N, NO2-N, NH4-N, TKN, Org-N and Total-N ranged from 0.10 to 64.10, BDL (below detection limit)-6.57, BDL-39.00, 7.84–202.16, 1.39–198.97 and 8.89–219.43 mg l−1, respectively. About 42% and 26% of the groundwater samples of the shallow and deep groundwater aquifers, respectively, exceeded the BIS (Bureau of Indian Standards) guideline value of 10 mg l−1 for NO3-N and may pose serious health hazards to the people of the area. The results of the study revealed that the groundwater aquifers of the study area are highly contaminated with the nitrate and indicates point source pollution of nitrate in the study area.  相似文献   
92.
Environmental Science and Pollution Research - In the last few decades, wind energy has become a significant source of the renewable energy system, and it is essential to use wind energy for...  相似文献   
93.
A range of bio-nanocomposites were prepared by incorporation of organo modified montmorillonite nanoclay (OMMT) with or without use of aluminum hydroxide (Al(OH)3) within polylactic acid (PLA) solution. Furthermore, the solution was employed for modification of ligno-cellulosic (jute) fabric structural reinforcements. The successful incorporation of nanofillers within the host polymer, polylactic acid (PLA) was confirmed by Fourier-transform infrared spectroscopy (FT-IR). Water uptake and swelling behaviour studies revealed that the water uptake and swelling ratio of bio-composites reduced significantly as compared to pristine jute fabric, whereas upon incorporation of OMMT and Al(OH)3, the water barrier properties reduced even further in the developed bio-nanocomposites. The flexural strength of the bio-nanocomposites also showed improved mechanical and dimensional stability. Synergistic effects of OMMT and Al(OH)3 were observed in enhancing the aforementioned physico-mechanical properties. Scanning electron microscopy (SEM) studies revealed microstructural details of developed samples. Similarly, the thermo-gravimetric analysis and linear burning rate studies of Al(OH)treated bio-nanocomposite materials revealed enhanced thermal resistance and reduced flammability respectively compared to both pristine woven jute fabric and fabrics treated with PLA alone or those without Al(OH)3. From the above results it can safely be said that the bio-nanocomposite material can be a prospective candidate for development of flame retardant biopackaging.  相似文献   
94.
Seeing the sustainability of rice-wheat cropping system (RWCS) of the Indo-Gangetic Plain, adequate crop nutrition in general and nitrogen (N) in particular holds the key to sound crop management. The excessive application or insufficient management of N means an economic loss to the farmer and may lead to yield penalties and environmental problems. Improving N management in consonance with other nutrients is much important to break yield plateaus as breeding for high yielding is not happening in recent years. Findings from farm survey are used to evaluate the on-farm N management practices in rice crop of the study area. The crop management practices (especially time of sowing/transplanting and irrigation requirement) and resource base of the farmers decided the N use pattern of the farmers. The N(Physical optimum) and N(economic optimum) exceeding the recommended levels revealed the apparent need for the revalidation of the existing recommendations. Paddy yield increased significantly within different rice types. This study generated comprehensive data on N use pattern in rice in the study area.  相似文献   
95.
Environmental Science and Pollution Research - Disinfectants and sanitizers are essential preventive agents against the coronavirus disease 2019 (COVID-19) pandemic; however, the pandemic crisis...  相似文献   
96.

Rice-based cropping systems are the most energy-intensive production systems in South Asia. Sustainability of the rice-based cropping systems is nowadays questioned with declining natural resource base, soil degradation, environmental pollution, and declining factor productivity. As a consequence, the search for energy and resource conservation agro-techniques is increasing for sustainable and cleaner production. Conservation agriculture (CA) practices have been recommended for resource conservation, soil health restoration and sustaining crop productivity. The present study aimed to assess the different CA modules in rice-based cropping systems for energy conservation, energy productivity, and to define energy-economic relations. A field experiment consisted of four different tillage-based crop establishment practices (puddled-transplanted rice followed by (fb) conventional-till maize/wheat (CTTPR-CT), non-puddled transplanted rice fb zero-till maize/wheat (NPTPR-ZT), zero-till transplanted rice fb zero-till maize/wheat (ZTTPR-ZT), zero-till direct-seeded rice fb zero-till maize/wheat (ZTDSR-ZT)), with two residue management treatments (residue removal, residue retention) in rice–wheat and rice–maize rotations were evaluated for energy budgeting and energy-economic relations. Conservation-tillage treatments (NPTPR-ZT, ZTTPR-ZT, and ZTDSR-ZT) reduced the energy requirements over conventional tillage treatments, with the greater reduction in ZTTPR-ZT and ZTDSR-ZT treatments. Savings of energy in conservation-tillage treatments were attributed to reduced energy use in land preparation (69–100%) and irrigation (23–27%), which consumed a large amount of fuel energy. Conservation-tillage treatments increased grain and straw/stover yields of crops, eventually increased the output energy (6–16%), net energy (14–26%), energy ratio (25–33%), and energy productivity (23–34%) as compared with CTTPR-CT. For these energy parameters, the treatment order was ZTDSR-ZT ≥ ZTTPR-ZT > NPTPR-ZT > CTTPR-CT (p < 0.05). Crop residue retention reduced net energy, energy ratio, and energy productivity when compared with residue removal. Our results of energy-economic relations favored the “conservative hypothesis,” which envisages that energy and monetary investments are not essentially the determinants of crop productivity. Thus, zero tillage-based crop establishments (ZTTPR-ZT, ZTDSR-ZT) in rice-based production systems could be the sustainable alternative to conventional tillage-based agriculture (CTTPR-CT) as they conserved non-renewable energy sources, reduced water requirement, and increased crop productivity.

  相似文献   
97.
Environmental Science and Pollution Research - This study explores the new area of corporate social responsibility (CSR) and financial performance in the context of the fintech technology. The...  相似文献   
98.
Environmental Science and Pollution Research - Mutagens present in the environment manifest toxic effects and are considered as serious threat for human health and healthcare. Recent reports reveal...  相似文献   
99.
In the present study, organismic-level acute toxicology profile of three reactive azo dyes, viz. Reactive Blue 221, Reactive Red 195, and Reactive Yellow 145, was investigated, by using bacterial (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Listeria monocytogenes, and Bacillus subtilis), fungal (Trichoderma asperellum, Aspergillus flavus, Fusarium fujikuroi, and Rhizoctonia solani), plant (Raphanus sativus, Triticum aestivum, Sorghum bicolor, and Phaseolus mungo), and aquatic (Artemia salina and Daphnia magna) specimens. Microbial test organisms (all the six bacteria and two fungi, i.e., T. asperellum and A. flavus) and D. magna were found to be relatively more sensitive towards the reactive azo dyes and their mixture, as the EC50 values were in the range of 80–330, 135–360, and 108–242 ppm for bacteria, fungi, and D. magna, respectively (but the effect was not acutely toxic). Moreover, the effect of dye mixture was comparable tothe individual dyes in almost all the tested microbial specimens. For plant seeds, the dye mixture was found to be relatively more inhibitory towards T. aestivum and R. sativus than the individual dyes. For S. bicolor and P. mungo seeds, the effect of the dye mixture was almost identical to the individual dyes. However, in all cases, EC50 values were in the range of 950–3500 ppm, which indicates a non-toxic effect on plant seed germination potential. Likewise, the dyes and their mixture were not acutely toxic for Artemia salina larvae (more sensitive to the dye mixture) and Daphnia magna neonates (EC50, 516–950 and 108–242 ppm, respectively).  相似文献   
100.
Th aim of this study is to investigate spatio-temporal trends of dengue vector breeding and epidemic (disease incidence) influenced by climatic factors. The spatio-temporal (low-, medium-, and high-intensity periods) evaluation of entomological and epidemiological investigations along with climatic factors like rainfall (RF), temperature (Tmax), relative humidity (RH), and larval indexing was conducted to develop correlations in the area of Lahore, Pakistan. The vector abundance and disease transmission trend was geo-tagged for spatial insight. The sufficient rainfall events and optimum temperature and relative humidity supported dengue vector breeding with high larval indices for water-related containers (27–37%). Among temporal analysis, the high-intensity period exponentially projected disease incidence followed by post-rainfall impacts. The high larval incidence that was observed in early high-intensity periods effected the dengue incidence. The disease incidence had a strong association with RF (r = 0.940, α = 0.01). The vector larva occurrence (r = 0.017, α = 0.05) influenced the disease incidence. Similarly, RH (r = 0.674, α = 0.05) and average Tmax (r = 0.307, α = 0.05) also induced impact on the disease incidence. In this study, the vulnerability to dengue fever highly correlates with meteorological factors during high-intensity period. It provides area-specific understanding of vector behavior, key containers, and seasonal patterns of dengue vector breeding and disease transmission which is essential for preparing an effective prevention plan against the vector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号