首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   1篇
废物处理   6篇
环保管理   7篇
综合类   5篇
基础理论   12篇
污染及防治   28篇
评价与监测   21篇
社会与环境   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   5篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   10篇
  2012年   2篇
  2011年   9篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   9篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1997年   1篇
  1958年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有83条查询结果,搜索用时 46 毫秒
51.
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration.  相似文献   
52.
A growing body of literature reports 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) degradation in poultry litter (PL) to the more toxic inorganic arsenic (As). Aluminum-based drinking-water treatment residuals (WTR) present a low-cost amendment technology to reduce As availability in PL, similar to the use of alum to reduce phosphorus availability. Batch experiments investigated the effectiveness of WTR in removing roxarsone and inorganic As species from PL aqueous suspensions. Incubation experiments with WTR-amended PL evaluated the effects of WTR application rates (2.5-15% by weight) and incubation time (up to 32 d) at two incubation temperatures (23 and 35 degrees C) on As availability in PL. Batch PL aqueous experiments showed the high affinity of As(V), As(III), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and roxarsone for the WTR. The 10% WTR amendment rate decreased As availability in PL by half of that of the unamended (no WTR) PL-incubated samples. The reduction in dissolved As concentrations during incubation of WTR-amended PL samples was kinetically limited, being complete within 13 d. Parallel reductions in roxarsone, As(V), and DMA concentrations were observed with liquid chromatography-inductively coupled plasma mass spectrometry, whereas As(III) and MMA concentrations were always <5% of dissolved As. Incubation temperature did not significantly (p > 0.05) influence dissolved As concentrations in the WTR-amended PL. Potential formation of a copper-containing roxarsone metabolite was considered in PL aqueous suspensions with the aid of electrospray mass spectrometry. Further experiments in the field are necessary to ensure that sorbed As is stable in WTR-amended PL.  相似文献   
53.
Use of Fe/Al hydroxide-containing materials to remediate As-contaminated sites is based on the general notion that As adsorption in soils is primarily controlled by Fe/Al (hydr)oxides. A low-cost and potentially effective substitute for natural Fe/Al hydroxides could be the drinking-water treatment residuals (WTRs). Earlier work in our laboratory has shown that WTRs are effective sorbents for As in water. We hypothesized that land-applied WTRs would work equally well for As-contaminated soils. Results showed that WTRs significantly (p<0.001) increased the soil As sorption capacity. All WTR loads (2.5, 5, and 10%) significantly (p<0.001) increased the overall amount of As sorbed by both soils when compared with that of the unamended controls. The amount of As desorbed with phosphate (7500 mg kg(-1) load) was approximately 50%. The WTR effectiveness in increasing soil As sorption capacities was unaffected by differences in both soils' chemical properties.  相似文献   
54.
Due to the increasing amount of polyurethane waste, chemical recycling of these materials is a topic of growing interest for many researchers. The primary purpose of polyurethane feedstock recycling is to recover the starting polyol. In this study glycerolysis using glycerine from two sources and two purity grades is proposed as a method of chemical recycling. The main effort of this paper focuses on the employment of commercial glycerine of analytical grade and waste glycerine without purification derived from the biodiesel production, as a decomposing agent for polyurethane recycling. In this study, the influence of polyurethane to glycerine mass ratio (PU/GL) and the type of decomposing agent on the chemical structure by FTIR, 1H NMR and GPC was examined. FTIR analysis of the glycerolysates showed absorption peaks similar to the virgin polyol. Those results are in compliance with GPC chromatograms, which showed for all samples, well-defined peak at ca. 13 min of retention time. The molecular weight of glycerolysates was ranging from 800 to 1300 g mol?1 depending on PU/GL mass ratio. The novel decomposition agent, namely waste glycerine derived from biodiesel production was successfully used in glycerolysis process.  相似文献   
55.
Evaluating a drinking-water waste by-product as a novel sorbent for arsenic   总被引:3,自引:0,他引:3  
Makris KC  Sarkar D  Datta R 《Chemosphere》2006,64(5):730-741
Arsenic (As) carcinogenicity to humans and other living organisms has promulgated extensive research on As treatment technologies with varying levels of success; generally, the most efficient methods come with a significantly higher cost burden and they usually perform better in removing As(V) than As(III) from solution. In the reported study, a novel sorbent, a waste by-product of the drinking-water treatment process, namely, drinking-water treatment residuals (WTRs) were evaluated for their ability to adsorb both As(V) and As(III). Drinking-WTRs can be obtained free-of-charge from drinking-water treatment plants, and they have been successfully used to reduce soluble phosphorus (P) concentrations in poorly P-sorbing soils. Phosphate and arsenate molecules have the same tetrahedral geometry, and they chemically behave in a similar manner. We hypothesized that the WTRs would be effective sorbents for both As(V) and As(III) species. Two WTRs (one Fe- and one Al-based) were used in batch experiments to optimize the maximum As(V) and As(III) sorption capacities, utilizing the effects of solid:solution ratios and reaction kinetics. Results showed that both WTRs exhibited high affinities for soluble As(V) and As(III), exhibiting Freundlich type adsorption with no obvious plateau after 2-d of reaction (15000 mg kg-1). The Al-WTR was highly effective in removing both As(V) and As(III), although As(III) removal was much slower. The Fe-WTR showed greater affinity for As(III) than for As(V) and reached As(III) sorption capacity levels similar to those obtained with the Al-WTR-As(V) system (15000 mg kg-1). Arsenic sorption kinetics were biphasic, similar to what has been observed with P sorption by the WTRs. Minimal (<3%) desorption of sorbed As(III) and As(V) was observed, using phosphate as the desorbing ligand. Dissolved Fe2+ concentrations measured during As(III) sorption were significantly correlated (r2=0.74, p<0.005) with the amount of As(III) sorbed by the Fe-WTR. Lack of correlation between Fe2+ in solution and sorbed As(V) (r2=0.2) suggests reductive dissolution of the Fe-WTR mediating As(III) sorption. Results show promising potential for the WTRs in irreversibly retaining As(V) and As(III) that should be further tested in field settings.  相似文献   
56.
A new Gram-positive, nonpigmented, rod-shaped fluoride-tolerant bacterial strain, NM25, was isolated from waterlogged muddy field soil collected from the fluoride endemic area of Rampurhat II block (average fluoride in water, 4.7 mg/l, and in soil, 1.5 mg/kg) in Birbhum District, West Bengal, India. The study was undertaken to characterize the fluoride-tolerant bacterial isolate, to determine its role in bioaccumulation of fluoride, and to analyze the water and soil quality of the bacterial environment. The isolate was positive for catalase, lipase, urease, protease, oxidase, and H2S production, but negative for indole production, nitrate reduction, and Vogues–Proskauer test. The organisms were sensitive to recommended doses of ofloxacin, kanamycin, rifampicin, levofloxacin, vancomycin, gatifloxacin, gentamicin, doxycycline, streptomycin, and nalidixic acid but resistant to ampicillin. Based on the phenotypic characteristics, 16S rRNA gene sequence, and phylogenetic analysis, the bacterial isolate NM25 was identified as Bacillus flexus. The G+C content of the 16S rDNA was 53.14 mol%. This strain tolerated up to 20 % (w/v) NaCl in nutrient agar medium and was grown at the pH range 4–12. It reduced fluoride concentration up to 67.45 % and tolerated more than 1,500 ppm of fluoride in brain–heart infusion agar medium.  相似文献   
57.
Lead (Pb)-based paints pose a serious health problem to people living in residential settings constructed prior to 1978. Children are at a greater risk to Pb exposure resulting from hand-to-mouth activity in Pb-contaminated residential soils. For soil Pb, the most environmentally friendly, potentially cheap, and visually unobtrusive in situ technology is phytoremediation. However, the limiting factor in a successful phytoremediation strategy is the availability of Pb for plant uptake. The purpose of this study was to establish a relationship between soil properties and the plant-available/exchangeable Pb fraction in the selected Pb-based paint-contaminated residential sites. We selected 20 such sites from two different locations (San Antonio, Texas and Baltimore, Maryland) with varying soil properties and total soil Pb concentrations ranging between 256 and 4,182 mg kg?1. Despite higher Pb levels in these soils that exceeds US EPA permissible limit of 400 mg kg???1, it is known that the plant-available Pb pools are significantly lower because of their sorption to soil components such as organic matter, Fe?CMn oxides, and clays, and their precipitation in the form of carbonates, hydroxides, and phosphates. Principal component analysis and hierarchical clustering showed that the potentially plant-available Pb fraction is controlled by soil pH in the case of acidic Baltimore soils, while soil organic matter plays a major role in alkaline San Antonio soils. Statistical models developed suggest that Pb is likely to be more available for plant uptake in Baltimore soils and a chelant-assisted phytoextraction strategy will be potentially necessary for San Antonio soils in mobilizing Pb from complexed pool to the plant-available pool. A thorough knowledge of site-specific factors is therefore essential in developing a suitable and successful phytoremediation model.  相似文献   
58.
An application of a newly developed optimal monitoring network for the delineation of contaminants in groundwater is demonstrated in this study. Designing a monitoring network in an optimal manner helps to delineate the contaminant plume with a minimum number of monitoring wells at optimal locations at a contaminated site. The basic principle used in this study is that the wells are installed where the measurement uncertainties are minimum at the potential monitoring locations. The development of the optimal monitoring network is based on the utilization of contaminant concentration data from an existing initial arbitrary monitoring network. The concentrations at the locations that were not sampled in the study area are estimated using geostatistical tools. The uncertainty in estimating the contaminant concentrations at such locations is used as design criteria for the optimal monitoring network. The uncertainty in the study area was quantified by using the concentration estimation variances at all the potential monitoring locations. The objective function for the monitoring network design minimizes the spatial concentration estimation variances at all potential monitoring well locations where a monitoring well is not to be installed as per the design criteria. In the proposed methodology, the optimal monitoring network is designed for the current management period and the contaminant concentration data estimated at the potential observation locations are then used as the input to the network design model. The optimal monitoring network is designed for the consideration of two different cases by assuming different initial arbitrary existing data. Three different scenarios depending on the limit of the maximum number of monitoring wells that can be allowed at any period are considered for each case. In order to estimate the efficiency of the developed optimal monitoring networks, mass estimation errors are compared for all the three different scenarios of the two different cases. The developed methodology is useful in coming up with an optimal number of monitoring wells within the budgetary limitations. The methodology also addresses the issue of redundancy, as it refines the existing monitoring network without losing much information of the network. The concept of uncertainty-based network design model is useful in various stages of a potentially contaminated site management such as delineation of contaminant plume and long-term monitoring of the remediation process.  相似文献   
59.
Historical use of high arsenic (As) concentrations in cattle/sheep dipping vat sites to treat ticks has resulted in severe contamination of soil and groundwater with this Group-A human carcinogen. In the absence of a universally applicable soil As bioaccessibility model, baseline risk assessment studies have traditionally used the extremely conservative estimate of 100% soil As bioaccessibility. Several in-vitro, as well as, in-vivo animal studies suggest that As bioaccessibility in soil can be lower than that in water. Arsenic in soils exists in several geochemical forms with varying degree of dissolution in the human digestive system, and thus, with highly varying As bioaccessibility. Earlier batch incubation studies with As-spiked soils have shown that As bioaccessibility is a function of soil physicochemical properties. We selected 12 dipping vat soils collected from USA and Australia to test the hypothesis that soil properties exert a significant effect on As bioaccessibility in As-contaminated sites. The 12 soils varied widely in terms of soil physico-chemical properties. They were subject to an As sequential fractionation scheme and two in-vitro tests (IVGS and IVGIA) to simulate soil As bioavailability in the human gastrointestinal system. Sequential As fractionation results showed that the majority of the As measured in the dipping vat soils resided either in the Fe/Al hydroxide fraction, or the Ca/Mg fractions, or in the residual fraction. Water-extractable As fraction of the 12 soils was typically <10% of the total, reaching values up to 23%, indicating minimal leaching potential, and hence, lower risk of As-contamination from exposure to groundwater, typically used as drinking water in many parts of the world. Partial individual correlations and subsequent multiple regression analyses suggested that the most significant soil factors influencing As bioaccessibility were total Ca+Mg, total P, clay content and EC. Collectively, these soil properties were able to explain 85 and 86% of the variability associated with the prediction of bioaccessible As, using IVGS and IVGIA in-vitro tests, respectively. This study showed that specific soil properties influenced the magnitude of soil As bioaccessibility, which was typically much lower than total soil-As concentrations, challenging the traditional risk assessment guideline, which assumes that soil As is 100% bioaccessible. Our study showed that total soil As concentration is unlikely to provide an accurate estimate of human health risk from exposure to dipping vat site soils.  相似文献   
60.
A series of bentonite polymer-composites (BPCs) loaded with metribuzin were studied for their controlled release in aqueous medium. The release of active ingredient from BPCs was significantly lower as compared to commercial metribuzin formulation. The results revealed that the cumulative metribuzin release was highest (81%) from the BPCs containing 8% clay (commercial bentonite) and 2% metribuzin which correspond to the lowest (14 days) half-life values i.e., time required for 50% release of active ingredient (t1/2). The metribuzin release from the BPCs decreased with increased concentration of clays in polymer matrix and the release was further decreased with BPCs prepared with pure nano-bentonite. BPCs containing 12% clay and 2% metribuzin showed maximum t1/2 values i.e., 25 and 51 days for commercial bentonite and pure nano-bentonite as clay sources, respectively. The differential behaviour in the metribuzin release rates from BPCs was ascribed due to variations in crosslinking of metribuzin in the composites. As metribuzin release was found to be slower in BPCs compared to commercial formulation, it could be used for control of weeds tailored to different crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号