首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6177篇
  免费   161篇
  国内免费   65篇
安全科学   316篇
废物处理   216篇
环保管理   1500篇
综合类   653篇
基础理论   1706篇
环境理论   9篇
污染及防治   1308篇
评价与监测   392篇
社会与环境   239篇
灾害及防治   64篇
  2023年   64篇
  2022年   63篇
  2021年   64篇
  2020年   75篇
  2019年   81篇
  2018年   142篇
  2017年   142篇
  2016年   220篇
  2015年   147篇
  2014年   194篇
  2013年   524篇
  2012年   260篇
  2011年   367篇
  2010年   247篇
  2009年   292篇
  2008年   314篇
  2007年   320篇
  2006年   278篇
  2005年   245篇
  2004年   218篇
  2003年   190篇
  2002年   182篇
  2001年   123篇
  2000年   119篇
  1999年   93篇
  1998年   89篇
  1997年   74篇
  1996年   83篇
  1995年   111篇
  1994年   91篇
  1993年   86篇
  1992年   68篇
  1991年   63篇
  1990年   54篇
  1989年   51篇
  1988年   39篇
  1987年   54篇
  1986年   55篇
  1985年   48篇
  1984年   68篇
  1983年   53篇
  1982年   66篇
  1981年   51篇
  1980年   40篇
  1979年   24篇
  1978年   33篇
  1977年   27篇
  1976年   18篇
  1975年   16篇
  1971年   16篇
排序方式: 共有6403条查询结果,搜索用时 15 毫秒
491.
An understanding of the causal mechanisms and processes that shape macroinvertebrate communities at a local scale has important implications for the management and conservation of freshwater biodiversity. Here we compare the performance of linear and non-linear statistics to explore diversity-environment relationships using data from 76 temporary and fluctuating ponds in two regions of southern England. We focus on aquatic beetle assemblages, which have been shown to be excellent surrogates of wider freshwater macroinvertebrate diversity. Ponds in the region contained a rich coleopteran fauna, totaling 68 species, which provided an excellent model system with which to compare the performance of two non-linear procedures (artificial neural networks—ANNs and generalised additive models—GAMs) and one more traditional linear approach (Multiple linear regression—MLR) to modelling diversity-environment relationships. Of all approaches employed, the best fit was obtained using an ANN model with only four input variables (conductivity, turbidity, magnesium concentration and depth). This model accounted for 82% of the observed variability in Shannon diversity index across ponds. In contrast, the best GAM and MLR models only explained 50% and 14% of this variation, respectively. Contribution profile analysis of conductivity, turbidity, magnesium concentration and depth, obtained from the best fit ANN through a hierarchical cluster analysis, allowed the identification of direct and proxy effects in relation to the environmental variables measured in this study. In each case, distinct clusters of ponds were identified in contribution profile analysis, suggesting that ponds across the two regions fall into a number of discrete groups, whose beetle faunas respond in subtly yet significantly different ways to key environmental variables. Aquatic coleopteran diversity in ponds in the two regions appears to be driven at a local scale by changes in relatively few physicochemical gradients, which are related to diversity in a clearly non-linear manner.  相似文献   
492.
Photochemical degradation of 1-nitropyrene, 2-nitrofluorene, 2,7-dinitrofluorene, 6-nitrochrysene, 3-nitrofluoranthene, 5-nitroacenaphthene, and 9-nitroanthracene was examined in CHCl3, CH2Cl2, DMF, DMF/H2O (80/20), CH3CN, or CH3CN/H2O (80/20). The degradation mostly follows the first order kinetics; but a few follow second order kinetics or undergo self-catalysis. The photodegradation rates follow the order: CHCl3 > CH2Cl2 > DMF > DMF/H2O > CH3CN > CH3CN/H2O. DMF is an exceptional solvent because three of the seven compounds undergo self-catalytic reaction. 9-Nitroanthracene, which has a perpendicular nitro group, is the fastest, while the more compact 1-nitropyrene and 3-nitrofluoranthene are the slowest degrading compounds.  相似文献   
493.
Clarke LM  Munch SB  Thorrold SR  Conover DO 《Ecology》2010,91(12):3526-3537
Patterns of connectivity are important in understanding the geographic scale of local adaptation in marine populations. While natural selection can lead to local adaptation, high connectivity can diminish the potential for such adaptation to occur. Connectivity, defined as the exchange of individuals among subpopulations, is presumed to be significant in most marine species due to life histories that include widely dispersive stages. However, evidence of local adaptation in marine species, such the Atlantic silverside, Menidia menidia, raises questions concerning the degree of connectivity. We examined geochemical signatures in the otoliths, or ear bones, of adult Atlantic silversides collected in 11 locations along the northeastern coast of the United States from New Jersey to Maine in 2004 and eight locations in 2005 using laser ablation inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio monitoring mass spectrometry (irm-MS). These signatures were then compared to baseline signatures of juvenile fish of known origin to determine natal origin of these adult fish. We then estimated migration distances and the degree of mixing from these data. In both years, fish generally had the highest probability of originating from the same location in which they were captured (0.01-0.80), but evidence of mixing throughout the sample area was present. Furthermore, adult M. menidia exhibit highly dispersive behavior with some fish migrating over 700 km. The probability of adult fish returning to natal areas differed between years, with the probability being, on average, 0.2 higher in the second year. These findings demonstrate that marine species with largely open populations are capable of local adaptation despite apparently high gene flow.  相似文献   
494.
A long-term pilot-scale H2-based membrane biofilm reactor (MBfR) was tested for removal of nitrate from actual groundwater. A key feature of this second-generation pilot MBfR is that it employed lower cost polyester hollow fibers and still achieved high loading rate. The steady-state maximum nitrate surface loading at which the effluent nitrate and nitrite concentrations were below the Maximum Contaminant Level (MCL) was at least 5.9 g·N·(m2·d)?1, which corresponds to a maximum volumetric loading of at least 7.7 kg·N·(m3·d) ?1. The steady-state maximum nitrate surface area loading was higher than the highest nitrate surface loading reported in the first-generation MBfRs using composite fibers (2.6 g·N·(m2·d)?1). This work also evaluated the H2-utilization efficiency in MBfR. The measured H2 supply rate was only slightly higher than the stoichiometric H2-utilization rate. Thus, H2 utilization was controlled by diffusion and was close to 100% efficiency, as long as biofilm accumulated on the polyester-fiber surface and the fibers had no leaks.  相似文献   
495.
Hunted wild animals (i.e., bushmeat) are a main source of protein for many rural populations in the tropics, and the unsustainable harvest of these animals puts both human food security and ecosystem functioning at risk. To understand the correlates of bushmeat consumption, we surveyed 1219 households in 121 rural villages near three newly established national parks in Gabon. Through the surveys we gathered information on bushmeat consumption, income, and material assests. In addition, we quantified land cover in a 5-km radius around the village center and distance of the village center to the nearest park boundary. Bushmeat was not a source of income for most households, but it was the primary animal protein consumed. Ninety-seven percent of households consumed bushmeat at least once during a survey period of 12 days. Income or wealth, land cover, distance of village to the nearest park boundary, and level of education of the head of the household were among the factors that significantly related to the likelihood of consuming any of the 10 most commonly consumed species of bushmeat. Household size was the predictor most strongly associated with quantities of bushmeat consumed and was negatively related to consumption. Total bushmeat consumption per adult male equivalent increased as household wealth increased and decreased as distance of villages to park boundaries increased. Bushmeat consumption at the household level was not related to unit values (i.e., price estimates for a good that typically does not have a market value; estimates derived from willingness to sell or trade the good for items of known price) of bushmeat or the price of chicken and fish as potential substitutes. The median consumption of bushmeat at the village level, however, was negatively related to village mean unit values of bushmeat across all species. Our results suggest that a lack of alternative protein sources motivated even the wealthiest among surveyed households to consume bushmeat. Providing affordable, alternative protein sources to all households would likely reduce unsustainable levels of bushmeat consumption in rural Gabon.  相似文献   
496.
Tanentzap AJ  Lee WG  Coomes DA 《Ecology》2012,93(3):462-469
Synchronous and intermittent reproduction in long-lived plants, known as mast seeding, is induced by climatic cues, but the mechanism explaining variation in masting among neighboring but edaphically segregated species is unknown. Soil nutrients can enhance flowering, and thus, populations on nutrient-rich soils may require less-favorable growing temperatures to flower. We tested this hypothesis by predicting the probability of flowering in response to air temperature for five species of alpine Chionochloa grasses in South Island, New Zealand, over 37 years and relating our predictions to soil N supply (NH4(+) + NO3(-)). Summer air temperatures better predicted flowering than spring air temperatures, which were correlated with soil N mineralization. Species on N-rich soils required lower mean temperatures to induce flowering and/or responded more consistently across a gradient of air temperatures, contributing to the higher probability of their tillers and tussocks flowering at low summer temperatures. Our results suggest that flowering primarily occurs in response to warm summer temperatures, but species on N-rich soils require less favorable growing conditions because they invest relatively less N in seeds. Thus, predicting masting requires a consideration of the interactions among climate, the internal resources of plants, and mineral nutrient uptake.  相似文献   
497.
Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes.  相似文献   
498.
Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as "historically mined" or "unmined," and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.  相似文献   
499.
Woody plant encroachment is a worldwide phenomenon in grassland and savanna systems whose consequence is often the development of an alternate woodland state. Theoretically, an alternate state may be associated with changes in system state variables (e.g., species composition) or abiotic parameter shifts (e.g., nutrient availability). When state-variable changes are cumulative, such as in woody plant encroachment, the probability of parameter shifts increases as system feedbacks intensify over time. Using a Before-After Control-Impact (BACI) design, we studied eight pairs of grassland sites undergoing various levels of eastern redcedar (Juniperus virginiana) encroachment to determine whether responses of flora and fauna to experimental redcedar removal differed according to the level of pretreatment redcedar cover. In the first year after removal, herbaceous plant species diversity and evenness, woody plant evenness, and invertebrate family richness increased linearly with pretreatment redcedar cover, whereas increases in small-mammal diversity and evenness were described by logarithmic trends. In contrast, increases in woody plant diversity and total biomass of terrestrial invertebrates were accentuated at levels of higher pretreatment cover. Tree removal also shifted small-mammal species composition toward a more grassland-associated assemblage. During the second year postremoval, increases in herbaceous plant diversity followed a polynomial trend, but increases in most other metrics did not vary along the pretreatment cover gradient. These changes were accompanied by extremely high growing-season precipitation, which may have homogenized floral and faunal responses to removal. Our results demonstrate that tree removal increases important community metrics among grassland flora and fauna within two years, with some responses to removal being strongly influenced by the stage of initial encroachment and modulated by climatic variability. Our results underscore the importance of decisive management for reversing the effects of woody plant encroachment in imperiled grassland ecosystems.  相似文献   
500.
Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号