首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4910篇
  免费   139篇
  国内免费   61篇
安全科学   270篇
废物处理   168篇
环保管理   1245篇
综合类   533篇
基础理论   1350篇
环境理论   8篇
污染及防治   992篇
评价与监测   317篇
社会与环境   172篇
灾害及防治   55篇
  2023年   57篇
  2022年   55篇
  2021年   55篇
  2020年   62篇
  2019年   69篇
  2018年   122篇
  2017年   133篇
  2016年   179篇
  2015年   121篇
  2014年   160篇
  2013年   407篇
  2012年   232篇
  2011年   304篇
  2010年   202篇
  2009年   236篇
  2008年   260篇
  2007年   255篇
  2006年   227篇
  2005年   195篇
  2004年   180篇
  2003年   148篇
  2002年   140篇
  2001年   86篇
  2000年   94篇
  1999年   68篇
  1998年   74篇
  1997年   60篇
  1996年   63篇
  1995年   78篇
  1994年   74篇
  1993年   66篇
  1992年   57篇
  1991年   39篇
  1990年   35篇
  1989年   36篇
  1988年   30篇
  1987年   39篇
  1986年   40篇
  1985年   39篇
  1984年   44篇
  1983年   44篇
  1982年   52篇
  1981年   43篇
  1980年   31篇
  1979年   16篇
  1978年   29篇
  1977年   16篇
  1976年   13篇
  1972年   7篇
  1971年   9篇
排序方式: 共有5110条查询结果,搜索用时 15 毫秒
191.
Temperature was found to have a dramatic effect on secondary organic aerosol formation from two ozonolysis systems, cyclohexene and α-pinene. Isothermal experiments were conducted for both systems where the lowest temperature, 278 K, formed approximately 2.5–3 times and 5–6 times the SOA formed at 300 K and 318 K, respectively. Changing the cyclohexene system temperature to a different isothermal experimental set point after completion of SOA formation did not lead to sufficient condensation/evaporation to reproduce the SOA formation at other temperature set points. When the system temperature was cycled between two set points at the end of an experiment, the α-pinene system showed reversibility between the initial temperature 318 K and 300 K. For temperature cycles between the initial temperature of 300 K–318 K, an irreversible loss of mass is observed after the first heating cycle with reversibility observed between subsequent temperature cycles. The SOA formed at 278 K was reversible over a 22 K range but was unable to evaporate sufficiently to match the SOA mass formed at 300 K. Hygroscopicity measurements, taken after the completion of SOA formation, indicate that hygroscopicity of the aerosol is also a function of temperature and that the aerosol does not continue to be oxidized after initial growth is complete. The differing hygroscopicity of the semi-volatile component of the aerosol is evident during system temperature changes after completion of the experiment.  相似文献   
192.
We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630–690 nm), band 5 (1550–1750 nm) and the ratio between bands 1 (450–520 nm) and 4 (760–900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520–600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.  相似文献   
193.
Understanding how setting attributes influence the nature of the visitor experience is crucial to effective recreation management. Highly influential attributes are useful indicators to monitor within a planning framework, such as Limits of Acceptable Change. This study sought to identify the setting attributes perceived to have the most profound effect on the ability to have “a real wilderness experience” and to assess the degree to which attribute importance varied with situational context and visitor characteristics. To this end, exiting hikers were surveyed at moderate and very high use trailheads in Alpine Lakes Wilderness, WA (USA), and Three Sisters Wilderness, OR (USA). They were asked about the degree to which encountering varying levels of different setting attributes would add to or detract from their experience. Attributes with the largest range of effect on experience, based on evaluations of different levels, were considered most important. The most influential attributes were litter and several types of campsite interaction—people walking through camp and number of other groups camping close by. The perceived importance of setting attributes did not vary much between wilderness locations with substantially different use levels, suggesting that conclusions are robust and generalizable across wilderness areas. There also was little difference in the perceptions of day and overnight visitors. In contrast, we found substantial variation in the perceived importance of setting attributes with variation in wilderness experience, knowledge, attachment, and motivation. Our results validate the emphasis of many wilderness management plans on indicators of social interaction, such as number of encounters.  相似文献   
194.
Vast areas of arable land have been retired from crop production and “rehabilitated” to improved system states through landowner incentive programs in the United States (e.g., Conservation and Wetland Reserve Programs), as well as Europe (i.e., Agri-Environment Schemes). Our review of studies conducted on invasion of rehabilitated agricultural production systems by nontarget species elucidates several factors that may increase the vulnerability of these systems to invasion. These systems often exist in highly fragmented and agriculturally dominated landscapes, where propagule sources of target species for colonization may be limited, and are established under conditions where legacies of past disturbance persist and prevent target species from persisting. Furthermore, rehabilitation approaches often do not include or successfully attain all target species or historical ecological processes (e.g., hydrology, grazing, and/or fire cycles) key to resisting invasion. Uncertainty surrounds ways in which nontarget species may compromise long term goals of improving biodiversity and ecosystem services through rehabilitation efforts on former agricultural production lands. This review demonstrates that more studies are needed on the extent and ecological impacts of nontarget species as related to the goals of rehabilitation efforts to secure current and future environmental benefits arising from this widespread conservation practice.  相似文献   
195.
196.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   
197.
Knowledge of the factors that influence the diffusion of contaminants, such as the diffusivity and the connected porosity, is crucial to modeling the long-term fate and transport of contaminants in subsurface systems with small or negligible advective flow, such as in fractured crystalline rock. Fractured rock is naturally heterogeneous, and hence, understanding the diffusivity of a molecule through this material (or the formation factor of the medium) becomes a complex problem, with critical concerns about the scale of laboratory measurements and about the spatial variability of these measurements relative to the scale needed for fate and transport modeling. This study employed both electrical and tracer-based laboratory methods to investigate the effects of scale and pore system connectivity on the diffusivity for volcanic matrix rock derived from the study site, a former underground nuclear test site at Amchitka Island, Alaska. The results of these investigations indicate a relatively well-connected pore system with scale effects generally limited to approximately 6 cm lengths and well-correlated to observed heterogeneous features. An important conclusion resulting from this study, however, is that there is a potential for the estimated diffusivity to be misrepresented by an order of magnitude if multiple samples or longer sample lengths are not used. Given the relatively large number of measurements resulting from these investigations, an analysis of the probability density function (PDF) of the diffusivity was possible. The PDF of the diffusivity was shown to generally follow a normal distribution for individual geologic layers. However, when all of the geologic layers are considered together, the distribution of the subsurface as a whole was shown to follow a lognormal distribution due to the order of magnitude differences amongst the layers. An understanding of these distributions is essential for future stochastic modeling efforts.  相似文献   
198.
People living without piped water and sewer can be at increased risk for diseases transmitted via the fecal-oral route. One rural Alaskan community that relies on hauling water into homes and sewage from homes was studied to determine the pathways of fecal contamination of drinking water and the human environment so that barriers can be established to protect health. Samples were tested for the fecal indicator, Escherichia coli, and the less specific indicator group, total coliforms. Shoes transported fecal contamination from outside to floor material inside buildings. Contamination in puddles on the road, in conjunction with contamination found on all-terrain vehicle (ATV) tires, supports vehicle traffic as a mechanism for transporting contamination from the dumpsite or other source areas to the rest of the community. The abundance of fecal bacteria transported around the community on shoes and ATV tires suggests that centralized measures for waste disposal as well as shoe removal in buildings could improve sanitation and health in the community.  相似文献   
199.
Abstract: Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient‐reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight‐digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.  相似文献   
200.
Abstract: Urbanization represents a strong and increasingly more prevalent impact on stream quality worldwide. One of the characteristic effects of increased urbanization is a consistent decline in biological stream condition. The characterization of this biological degradation with increasing urbanization presents a number of advantages for the study and management of urban streams and catchments. In this paper, the limitation of biological condition with urbanization, called observed biological potential, is characterized. Using an urban intensity index and a biological index developed specifically for urban systems in the Baltimore, Maryland; Cleveland, Ohio; and San Jose, California regions, two principal techniques were compared (quantile regression and bin regression) to define observed biological potential along urban gradients. Quantile regression was selected as the preferable tool for describing observed biological potential given the consistency with which it can be applied and its statistical efficiency, however, bin quantile regression performed similarly. Having identified a numeric approximation of observed biological potential, two methods for identifying factors related to distance from potential as a way of identifying critical environmental factors affecting biological condition in urban areas were explored. The results of this work can be used for identifying benchmarks for urban stream biological condition, identifying limiting catchment characteristics, and prioritizing urban stream management efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号